Your browser doesn't support javascript.
loading
Model-based frequency-and-phase correction of 1H MRS data with 2D linear-combination modeling.
Simicic, Dunja; Zöllner, Helge J; Davies-Jenkins, Christopher W; Hupfeld, Kathleen E; Edden, Richard A E; Oeltzschner, Georg.
Afiliación
  • Simicic D; Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
  • Zöllner HJ; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.
  • Davies-Jenkins CW; Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
  • Hupfeld KE; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.
  • Edden RAE; Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
  • Oeltzschner G; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.
Magn Reson Med ; 92(5): 2222-2236, 2024 Nov.
Article en En | MEDLINE | ID: mdl-38988088
ABSTRACT

PURPOSE:

Retrospective frequency-and-phase correction (FPC) methods attempt to remove frequency-and-phase variations between transients to improve the quality of the averaged MR spectrum. However, traditional FPC methods like spectral registration struggle at low SNR. Here, we propose a method that directly integrates FPC into a 2D linear-combination model (2D-LCM) of individual transients ("model-based FPC"). We investigated how model-based FPC performs compared to the traditional approach, i.e., spectral registration followed by 1D-LCM in estimating frequency-and-phase drifts and, consequentially, metabolite level estimates.

METHODS:

We created synthetic in-vivo-like 64-transient short-TE sLASER datasets with 100 noise realizations at 5 SNR levels and added randomly sampled frequency and phase variations. We then used this synthetic dataset to compare the performance of 2D-LCM with the traditional approach (spectral registration, averaging, then 1D-LCM). Outcome measures were the frequency/phase/amplitude errors, the SD of those ground-truth errors, and amplitude Cramér Rao lower bounds (CRLBs). We further tested the proposed method on publicly available in-vivo short-TE PRESS data.

RESULTS:

2D-LCM estimates (and accounts for) frequency-and-phase variations directly from uncorrected data with equivalent or better fidelity than the conventional approach. Furthermore, 2D-LCM metabolite amplitude estimates were at least as accurate, precise, and certain as the conventionally derived estimates. 2D-LCM estimation of FPC and amplitudes performed substantially better at low-to-very-low SNR.

CONCLUSION:

Model-based FPC with 2D linear-combination modeling is feasible and has great potential to improve metabolite level estimation for conventional and dynamic MRS data, especially for low-SNR conditions, for example, long TEs or strong diffusion weighting.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Encéfalo / Relación Señal-Ruido Límite: Humans Idioma: En Revista: Magn Reson Med Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Encéfalo / Relación Señal-Ruido Límite: Humans Idioma: En Revista: Magn Reson Med Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos