Your browser doesn't support javascript.
loading
Deep learning for quantifying spatial patterning and formation process of early differentiated human-induced pluripotent stem cells with micropattern images.
Chu, Slo-Li; Abe, Kuniya; Yokota, Hideo; Cho, Dooseon; Hayashi, Yohei; Tsai, Ming-Dar.
Afiliación
  • Chu SL; Department of Information and Computer Engineering, Chung-Yuan Christian University, Chung-Li, Taoyuan, Taiwan.
  • Abe K; BioResource Research Center, RIKEN, Tsukuba, Ibaraki, Japan.
  • Yokota H; Center for Advanced Photonics, RIKEN, Wako, Saitama, Japan.
  • Cho D; BioResource Research Center, RIKEN, Tsukuba, Ibaraki, Japan.
  • Hayashi Y; BioResource Research Center, RIKEN, Tsukuba, Ibaraki, Japan.
  • Tsai MD; Department of Information and Computer Engineering, Chung-Yuan Christian University, Chung-Li, Taoyuan, Taiwan.
J Microsc ; 296(1): 79-93, 2024 Oct.
Article en En | MEDLINE | ID: mdl-38994744
ABSTRACT
Micropatterning is reliable method for quantifying pluripotency of human-induced pluripotent stem cells (hiPSCs) that differentiate to form a spatial pattern of sorted, ordered and nonoverlapped three germ layers on the micropattern. In this study, we propose a deep learning method to quantify spatial patterning of the germ layers in the early differentiation stage of hiPSCs using micropattern images. We propose decoding and encoding U-net structures learning labelled Hoechst (DNA-stained) hiPSC regions with corresponding Hoechst and bright-field micropattern images to segment hiPSCs on Hoechst or bright-field images. We also propose a U-net structure to extract extraembryonic regions on a micropattern, and an algorithm to compares intensities of the fluorescence images staining respective germ-layer cells and extract their regions. The proposed method thus can quantify the pluripotency of a hiPSC line with spatial patterning including cell numbers, areas and distributions of germ-layer and extraembryonic cells on a micropattern, and reveal the formation process of hiPSCs and germ layers in the early differentiation stage by segmenting live-cell bright-field images. In our assay, the cell-number accuracy achieved 86% and 85%, and the cell region accuracy 89% and 81% for segmenting Hoechst and bright-field micropattern images, respectively. Applications to micropattern images of multiple hiPSC lines, micropattern sizes, groups of markers, living and fixed cells show the proposed method can be expected to be a useful protocol and tool to quantify pluripotency of a new hiPSC line before providing it to the scientific community.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Diferenciación Celular / Células Madre Pluripotentes Inducidas / Aprendizaje Profundo Límite: Humans Idioma: En Revista: J Microsc Año: 2024 Tipo del documento: Article País de afiliación: Taiwán

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Diferenciación Celular / Células Madre Pluripotentes Inducidas / Aprendizaje Profundo Límite: Humans Idioma: En Revista: J Microsc Año: 2024 Tipo del documento: Article País de afiliación: Taiwán