Using large language model (LLM) to identify high-burden informal caregivers in long-term care.
Comput Methods Programs Biomed
; 255: 108329, 2024 Oct.
Article
en En
| MEDLINE
| ID: mdl-39029418
ABSTRACT
BACKGROUND:
The rising global elderly population increases the demand for caregiving, yet traditional methods may not fully assess the challenges faced by vital informal caregivers.OBJECTIVE:
To investigate the efficacy of Large Language Model (LLM) in detecting overburdened informal caregivers, benchmarking against rule-based and machine learning methods.METHODS:
1,791 eligible informal caregivers from Southern Taiwan and utilized their textual case summary reports for the LLM. We also employed structured questionnaire results for machine learning models. Furthermore, we leveraged the visualization of the LLM's attention mechanisms to enhance our understanding of the model's interpretative capabilities.RESULTS:
The LLM achieved an Area Under the Receiver Operating Characteristic (AUROC) curve of 0.84 and an Area Under the Precision-Recall Curve (AUPRC) of 0.70, marking an 8% and 14% improvement over traditional methods. The visualization of the attention mechanism accurately reflected the evaluations of human experts, concentrating on descriptions of high-burden descriptions and the relationships between caregivers and recipients.CONCLUSION:
This research demonstrates the notable capability of LLM to accurately identify high-burden caregivers in Long-term Care (LTC) settings. Compared to traditional approaches, LLM offers an opportunity for the future of LTC research and policymaking.Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Cuidadores
/
Cuidados a Largo Plazo
Límite:
Aged
/
Aged80
/
Female
/
Humans
/
Male
/
Middle aged
País/Región como asunto:
Asia
Idioma:
En
Revista:
Comput Methods Programs Biomed
Asunto de la revista:
INFORMATICA MEDICA
Año:
2024
Tipo del documento:
Article
País de afiliación:
Taiwán