Your browser doesn't support javascript.
loading
A dive into the physiological responses to maximal apneas, O2 and CO2 tables in apnea novices.
Declercq, Louise; Bouten, Janne; Van Dyck, Matthew; Boone, Jan; Derave, Wim; Heyse, Bjorn; Bourgois, Jan G.
Afiliación
  • Declercq L; Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium.
  • Bouten J; Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium.
  • Van Dyck M; Laboratory of Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France.
  • Boone J; Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium.
  • Derave W; Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium.
  • Heyse B; Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium.
  • Bourgois JG; Department of Anesthesiology, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
Eur J Appl Physiol ; 2024 Jul 24.
Article en En | MEDLINE | ID: mdl-39044031
ABSTRACT

PURPOSE:

Apnea duration is dependent on three factors oxygen storage, oxygen consumption, hypoxia and hypercapnia tolerance. While current literature focuses on maximal apneas to improve apnea duration, apnea trained individuals use timed-repeated submaximal apneas, called "O2 and CO2 tables". These tables claim to accommodate the body to cope with hypoxia and hypercapnia, respectively. The aim of this study was twofold. First, to investigate the determinants of maximal apnea duration in apnea novices. Second, to compare physiologic responses to maximal apneas, O2 and CO2 tables.

METHODS:

After medical screening, lung function test and hemoglobin mass measurement, twenty-eight apnea novices performed three apnea protocols in random order maximal apneas, O2 table and CO2 table. During apnea, peripheral oxygen saturation (SpO2), heart rate (HR), muscle (mTOI) and cerebral (cTOI) tissue oxygenation index were measured continuously. End-tidal carbon dioxide (EtCO2) was measured before and after apneas.

RESULTS:

Larger lung volumes, higher resting cTOI and lower resting EtCO2 levels correlated with longer apnea durations. Maximal apneas induced greater decreases in SpO2 (- 16%) and cTOI (- 13%) than O2 (- 8%; - 8%) and CO2 tables (- 6%; - 6%), whereas changes in EtCO2, HR and mTOI did not differ between protocols.

CONCLUSION:

These results suggest that, in apnea novices, O2 and CO2 tables did not induce a more profound hypoxia and hypercapnia, but a similar reduction in oxygen consumption than maximal apneas. Therefore, apnea novices should mainly focus on maximal apneas to improve hypoxia and hypercapnia tolerance. The use of specific lung training protocols can help to increase oxygen storage capacity.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Eur J Appl Physiol Asunto de la revista: FISIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Bélgica

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Eur J Appl Physiol Asunto de la revista: FISIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Bélgica