Your browser doesn't support javascript.
loading
Scalable approaches for generating, validating and incorporating data from high-throughput functional assays to improve clinical variant classification.
Padigepati, Samskruthi Reddy; Stafford, David A; Tan, Christopher A; Silvis, Melanie R; Jamieson, Kirsty; Keyser, Andrew; Nunez, Paola Alejandra Correa; Nicoludis, John M; Manders, Toby; Fresard, Laure; Kobayashi, Yuya; Araya, Carlos L; Aradhya, Swaroop; Johnson, Britt; Nykamp, Keith; Reuter, Jason A.
Afiliación
  • Padigepati SR; Invitae Corporation, San Francisco, CA, 94103, USA.
  • Stafford DA; Invitae Corporation, San Francisco, CA, 94103, USA.
  • Tan CA; Invitae Corporation, San Francisco, CA, 94103, USA.
  • Silvis MR; Invitae Corporation, San Francisco, CA, 94103, USA.
  • Jamieson K; Epic Bio, South San Francisco, CA, 94080, USA.
  • Keyser A; Invitae Corporation, San Francisco, CA, 94103, USA.
  • Nunez PAC; Epic Bio, South San Francisco, CA, 94080, USA.
  • Nicoludis JM; Invitae Corporation, San Francisco, CA, 94103, USA.
  • Manders T; Calico Life Sciences, South San Francisco, CA, 94080, USA.
  • Fresard L; Invitae Corporation, San Francisco, CA, 94103, USA.
  • Kobayashi Y; Gilead Life Sciences Inc, Foster City, CA, 94404, USA.
  • Araya CL; Invitae Corporation, San Francisco, CA, 94103, USA.
  • Aradhya S; Department of Structural Biology, Genentech, South San Francisco, CA, 94080, USA.
  • Johnson B; Invitae Corporation, San Francisco, CA, 94103, USA.
  • Nykamp K; Invitae Corporation, San Francisco, CA, 94103, USA.
  • Reuter JA; Invitae Corporation, San Francisco, CA, 94103, USA.
Hum Genet ; 143(8): 995-1004, 2024 Aug.
Article en En | MEDLINE | ID: mdl-39085601
ABSTRACT
As the adoption and scope of genetic testing continue to expand, interpreting the clinical significance of DNA sequence variants at scale remains a formidable challenge, with a high proportion classified as variants of uncertain significance (VUSs). Genetic testing laboratories have historically relied, in part, on functional data from academic literature to support variant classification. High-throughput functional assays or multiplex assays of variant effect (MAVEs), designed to assess the effects of DNA variants on protein stability and function, represent an important and increasingly available source of evidence for variant classification, but their potential is just beginning to be realized in clinical lab settings. Here, we describe a framework for generating, validating and incorporating data from MAVEs into a semi-quantitative variant classification method applied to clinical genetic testing. Using single-cell gene expression measurements, cellular evidence models were built to assess the effects of DNA variation in 44 genes of clinical interest. This framework was also applied to models for an additional 22 genes with previously published MAVE datasets. In total, modeling data was incorporated from 24 genes into our variant classification method. These data contributed evidence for classifying 4043 observed variants in over 57,000 individuals. Genetic testing laboratories are uniquely positioned to generate, analyze, validate, and incorporate evidence from high-throughput functional data and ultimately enable the use of these data to provide definitive clinical variant classifications for more patients.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Variación Genética / Pruebas Genéticas Límite: Humans Idioma: En Revista: Hum Genet Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Variación Genética / Pruebas Genéticas Límite: Humans Idioma: En Revista: Hum Genet Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos