Your browser doesn't support javascript.
loading
Chronic Kidney Disease-associated Lung Injury Is Mediated by Phosphate-induced MAPK/AKT Signaling.
Bollenbecker, Seth; Hirsch, Meghan June; Matthews, Emma Lea; Easter, Molly; Vang, Shia; Howze, Patrick Henry; Morales, Angela N; Harris, Elex; Barnes, Jarrod W; Faul, Christian; Krick, Stefanie.
Afiliación
  • Bollenbecker S; University of Alabama at Birmingham, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Birmingham, Alabama, United States.
  • Hirsch MJ; University of Alabama at Birmingham, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Birmingham, Alabama, United States.
  • Matthews EL; University of Alabama at Birmingham, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Birmingham, Alabama, United States.
  • Easter M; University of Alabama at Birmingham, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Birmingham, Alabama, United States.
  • Vang S; University of Alabama at Birmingham, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Birmingham, Alabama, United States.
  • Howze PH; University of Alabama at Birmingham, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Birmingham, Alabama, United States.
  • Morales AN; University of Alabama at Birmingham, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Birmingham, Alabama, United States.
  • Harris E; University of Alabama at Birmingham, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Birmingham, Alabama, United States.
  • Barnes JW; University of Alabama at Birmingham, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Birmingham, Alabama, United States.
  • Faul C; University of Alabama at Birmingham, Division of Nephrology, Department of Medicine, Birmingham, Alabama, United States.
  • Krick S; University of Alabama at Birmingham, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Birmingham, Alabama, United States; skrick@uabmc.edu.
Article en En | MEDLINE | ID: mdl-39088759
ABSTRACT
Chronic kidney disease (CKD) is associated with systemic phosphate elevations, called hyperphosphatemia. Translational studies have shown that hyperphosphatemia contributes to CKD-associated inflammation and injury in various tissues, including the kidney, heart, liver, and parathyroid gland. Mechanisms underlying pathologic actions of elevated phosphate on cells are not well understood but seem to involve uptake of phosphate through sodium-phosphate cotransporters and phosphate-induced signaling via fibroblast growth factor receptor (FGFR) 1. Clinical studies indicate CKD patients are more likely to develop inflammatory and restrictive lung diseases, such as fibrotic interstitial lung diseases, and here we aimed to determine whether hyperphosphatemia can cause lung injury. We found that a mouse model of CKD and hyperphosphatemia, induced by an adenine-rich diet, develops lung fibrosis and inflammation. Elevation of systemic phosphate levels by administration of a high-phosphate diet in a mouse model of primary lung inflammation and fibrosis, induced by bleomycin, exacerbated lung injury in the absence of kidney damage. Our in vitro studies identified increases of proinflammatory cytokines in human lung fibroblasts exposed to phosphate elevations. Phosphate activated extracellular signal related kinase (ERK) 1/2 and protein kinase B (PKB/AKT) signaling, and pharmacological inhibition of ERK, AKT, FGFR1, or sodium-phosphate cotransporters prevented phosphate-induced proinflammatory cytokine upregulation. Additionally, inhibition of FGFR1 or sodium-phosphate cotransporters decreased the phosphate-induced activation of ERK and AKT. Our study suggests that phosphate can directly target lung fibroblasts and induce an inflammatory response and that hyperphosphatemia in CKD and non-CKD models contributes to lung injury. Phosphate-lowering strategies might protect from CKD-associated lung injury.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Am J Respir Cell Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Am J Respir Cell Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos