Your browser doesn't support javascript.
loading
scMaui: a widely applicable deep learning framework for single-cell multiomics integration in the presence of batch effects and missing data.
Jeong, Yunhee; Ronen, Jonathan; Kopp, Wolfgang; Lutsik, Pavlo; Akalin, Altuna.
Afiliación
  • Jeong Y; Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany.
  • Ronen J; Faculty of Mathematics and Informatics, Heidelberg University, Im Neuenheimer Feld 205, Heidelberg, Germany.
  • Kopp W; Bioinformatics and Omics Data Science Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany.
  • Lutsik P; Inceptive Nucleics, Inc., Palo Alto, CA, USA.
  • Akalin A; Bioinformatics and Omics Data Science Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany.
BMC Bioinformatics ; 25(1): 257, 2024 Aug 06.
Article en En | MEDLINE | ID: mdl-39107690
ABSTRACT
The recent advances in high-throughput single-cell sequencing have created an urgent demand for computational models which can address the high complexity of single-cell multiomics data. Meticulous single-cell multiomics integration models are required to avoid biases towards a specific modality and overcome sparsity. Batch effects obfuscating biological signals must also be taken into account. Here, we introduce a new single-cell multiomics integration model, Single-cell Multiomics Autoencoder Integration (scMaui) based on variational product-of-experts autoencoders and adversarial learning. scMaui calculates a joint representation of multiple marginal distributions based on a product-of-experts approach which is especially effective for missing values in the modalities. Furthermore, it overcomes limitations seen in previous VAE-based integration methods with regard to batch effect correction and restricted applicable assays. It handles multiple batch effects independently accepting both discrete and continuous values, as well as provides varied reconstruction loss functions to cover all possible assays and preprocessing pipelines. We demonstrate that scMaui achieves superior performance in many tasks compared to other methods. Further downstream analyses also demonstrate its potential in identifying relations between assays and discovering hidden subpopulations.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Análisis de la Célula Individual / Aprendizaje Profundo Límite: Humans Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Análisis de la Célula Individual / Aprendizaje Profundo Límite: Humans Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Alemania