Suppressing hydrogen evolution and promoting dendrite free zinc deposition by fluorinated triazine framework towards robust aqueous zinc ion batteries.
J Colloid Interface Sci
; 677(Pt A): 812-819, 2025 Jan.
Article
en En
| MEDLINE
| ID: mdl-39121665
ABSTRACT
Aqueous zinc-ion batteries (AZIBs) have become a research hotspot, but the inevitable zinc dendrites and parasitic reactions in the zinc anode seriously hinder their further development. In this study, three covalent triazine frameworks (DCPY-CTF, CTF-1 and FCTF) have been synthesized and used as artificial protective coatings, in which the fluorinated triazine framework (FCTF) increases the zinc-philic site, thus better promoting dendritic free zinc deposition and inhibiting hydrogen evolution reactions. Excitingly, both experimental results and theoretical calculations indicate that the FCTF interface adjusts the deposition of Zn2+ along the (002) plane, effectively alleviating the formation of zinc dendrites. As expected, Zn@FCTF symmetric cells exhibit cycling stability of over 4000 h (0.25 mA cm-2), meanwhile Zn@FCTF//NHVO full cells provide a high specific capacity of 280 mAh/g at 1.0 A/g, which are superior to those of bare Zn anode. This work provides new insights for suppressing hydrogen evolution and promoting dendrite-free zinc deposition to construct highly stable and reversible AZIBs.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
J Colloid Interface Sci
Año:
2025
Tipo del documento:
Article