Non-canonical autophosphorylation of RIPK1 drives timely pyroptosis to control Yersinia infection.
Cell Rep
; 43(8): 114641, 2024 Aug 27.
Article
en En
| MEDLINE
| ID: mdl-39154339
ABSTRACT
Caspase-8-dependent pyroptosis has been shown to mediate host protection from Yersinia infection. For this mode of cell death, the kinase activity of receptor-interacting protein kinase 1 (RIPK1) is required, but the autophosphorylation sites required to drive caspase-8 activation have not been determined. Here, we show that non-canonical autophosphorylation of RIPK1 at threonine 169 (T169) is necessary for caspase-8-mediated pyroptosis. Mice with alanine in the T169 position are highly susceptible to Yersinia dissemination. Mechanistically, the delayed formation of a complex containing RIPK1, ZBP1, Fas-associated protein with death domain (FADD), and caspase-8 abrogates caspase-8 maturation in T169A mice and leads to the eventual activation of RIPK3-dependent necroptosis in vivo; however, this is insufficient to protect the host, suggesting that timely pyroptosis during early response is specifically required to control infection. These results position RIPK1 T169 phosphorylation as a driver of pyroptotic cell death critical for host defense.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Yersiniosis
/
Proteína Serina-Treonina Quinasas de Interacción con Receptores
/
Piroptosis
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Cell Rep
Año:
2024
Tipo del documento:
Article
País de afiliación:
Estados Unidos