Your browser doesn't support javascript.
loading
Phage therapy for bone and joint infections: A comprehensive exploration of challenges, dynamics, and therapeutic prospects.
Peng, Jiaze; Guo, Caopei; Yang, Chengbing; Zhang, Lin; Yang, Fuyin; Huang, Xianpeng; Yu, Yang; Zhang, Tao; Peng, Jiachen.
Afiliación
  • Peng J; Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China.
  • Guo C; Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China.
  • Yang C; Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China.
  • Zhang L; Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China.
  • Yang F; Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China.
  • Huang X; Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China.
  • Yu Y; Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China.
  • Zhang T; Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
  • Peng J; Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China; Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University,
J Glob Antimicrob Resist ; 39: 12-21, 2024 Aug 19.
Article en En | MEDLINE | ID: mdl-39168373
ABSTRACT

OBJECTIVES:

Bone and joint infections (BJI) pose formidable challenges in orthopaedics due to antibiotic resistance and the complexities of biofilm, complicating treatment. This comprehensive exploration addresses the intricate challenges posed by BJI and highlights the significant role of phage therapy as a non-antibiotic strategy.

METHODS:

BJI, which encompass prosthetic joint infections, osteomyelitis, and purulent arthritis, are exacerbated by biofilm formation on bone and implant surfaces, hindering treatment efficacy. Gram-negative bacterial infections, characterized by elevated antibiotic resistance, further contribute to the clinical challenge. Amidst this therapeutic challenge, phage therapy emerges as a potential strategy, showing unique characteristics such as strict host specificity and biofilm disruption capabilities.

RESULTS:

The review unveils the dynamics of phages, including their origins, lifecycle outcomes, and genomic characteristics. Animal studies, in vitro investigations, and clinical research provide compelling evidence of the efficacy of phages in treating Staphylococcus aureus infections, particularly in osteomyelitis cases. Phage lysins exhibit biofilm-disrupting capabilities, offering a meaningful method for addressing BJI. Recent statistical analyses reveal high clinical relief rates and a favourable safety profile for phage therapy.

CONCLUSIONS:

Despite its promise, phage therapy encounters limitations, including a narrow host range and potential immunogenicity. The comprehensive analysis navigates these challenges and charts the future of phage therapy, emphasizing standardization, pharmacokinetics, and global collaboration. Anticipated strides in phage engineering and combination therapy hold promise for combating antibiotic-resistant BJI.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Glob Antimicrob Resist Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Glob Antimicrob Resist Año: 2024 Tipo del documento: Article País de afiliación: China