Your browser doesn't support javascript.
loading
Linc20486 promotes BmCPV replication through inhibiting the transcription of AGO2 and Dicers.
Wang, Mengdong; Tang, Weiming; Wu, Chengyue; Chen, Yeping; Li, Hao; Wu, Ping; Qian, Heying; Guo, Xijie; Zhang, Zhendong.
Afiliación
  • Wang M; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institut
  • Tang W; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institut
  • Wu C; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institut
  • Chen Y; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institut
  • Li H; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institut
  • Wu P; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institut
  • Qian H; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institut
  • Guo X; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institut
  • Zhang Z; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institut
J Invertebr Pathol ; : 108170, 2024 Aug 20.
Article en En | MEDLINE | ID: mdl-39173824
ABSTRACT
The silkworm holds pivotal economic importance, serving not only as a primary source of silk but also as a prominent model organism in scientific research. Nonetheless, silkworm farming remains vulnerable to diverse factors, with viral infections posing the gravest threat to the sericulture industry. Among these, the Bombyx mori cytoplasmic polyhedrosis virus (BmCPV), a member of the Reoviridae family and the cytoplasmic polyhedrosis virus genus, emerges as a significant pathogen in silkworm production. BmCPV infection primarily induces midgut sepsis in silkworms, spreads rapidly, and can inflict substantial economic losses on sericulture production. Presently, effective strategies for preventing and treating BmCPV infections are lacking. Long non-coding RNA (lncRNA) constitutes a class of RNA molecules with transcripts exceeding 200 nt, playing a crucial role in mediating the interplay between pathogens and host cells. Investigation through high-throughput technology has unveiled that BmCPV infection markedly upregulates the expression of Linc20486. This observation suggests potential involvement of Linc20486 in regulating virus replication. Indeed, as anticipated, knockdown of Linc20486 in cells profoundly impedes BmCPV replication, whereas overexpression significantly enhances virus propagation. To probe into the mechanism underlying Linc20486's impact on virus replication, its effects on autophagy, innate immunity, and RNAi-related pathways were scrutinized. The findings revealed that Linc20486 exerts significant influence on the expression of RNAi pathway-related genes, such as Dicer1, Dicer2 and AGO2. This discovery holds promise for unveiling novel avenues to comprehend and combat BmCPV infections in silkworms.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Invertebr Pathol Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Invertebr Pathol Año: 2024 Tipo del documento: Article