Your browser doesn't support javascript.
loading
Enhanced deep potential model for fast and accurate molecular dynamics: application to the hydrated electron.
Gao, Ruiqi; Li, Yifan; Car, Roberto.
Afiliación
  • Gao R; Department of Electrical and Computer Engineering, Princeton University, Princeton, USA.
  • Li Y; Department of Chemistry, Princeton University, Princeton, USA. rcar@princeton.edu.
  • Car R; Department of Chemistry, Princeton University, Princeton, USA. rcar@princeton.edu.
Phys Chem Chem Phys ; 26(35): 23080-23088, 2024 Sep 11.
Article en En | MEDLINE | ID: mdl-39177036
ABSTRACT
In molecular simulations, neural network force fields aim at achieving ab initio accuracy with reduced computational cost. This work introduces enhancements to the Deep Potential network architecture, integrating a message-passing framework and a new lightweight implementation with various improvements. Our model achieves accuracy on par with leading machine learning force fields and offers significant speed advantages, making it well-suited for large-scale, accuracy-sensitive systems. We also introduce a new iterative model for Wannier center prediction, allowing us to keep track of electron positions in simulations of general insulating systems. We apply our model to study the solvated electron in bulk water, an ostensibly simple system that is actually quite challenging to represent with neural networks. Our trained model is not only accurate, but can also transfer to larger systems. Our simulation confirms the cavity model, where the electron's localized state is observed to be stable. Through an extensive run, we accurately determine various structural and dynamical properties of the solvated electron.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos