Your browser doesn't support javascript.
loading
Influenza virus antibodies inhibit antigen-specific de novo B cell responses in mice.
Goodwin, Eileen; Gibbs, James S; Yewdell, Jonathan W; Eisenlohr, Laurence C; Hensley, Scott E.
Afiliación
  • Goodwin E; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
  • Gibbs JS; Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
  • Yewdell JW; Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
  • Eisenlohr LC; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
  • Hensley SE; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
J Virol ; 98(9): e0076624, 2024 Sep 17.
Article en En | MEDLINE | ID: mdl-39194245
ABSTRACT
Antibody responses to influenza vaccines tend to be focused on epitopes encountered during prior influenza exposures, with little production of de novo responses to novel epitopes. To examine the contribution of circulating antibodies to this phenomenon, we passively transferred a hemagglutinin (HA)-specific monoclonal antibody (mAb) into mice before immunizing with whole inactivated virions. The HA mAb inhibited de novo HA-specific antibodies, plasmablasts, germinal center B cells, and memory B cells, while responses to a second antigen in the vaccine, neuraminidase (NA), were uninhibited. The HA mAb potently inhibited de novo antibody responses against epitopes near the HA mAb binding site. The HA mAb also promoted IgG1 class switching, an effect that, unlike the inhibition of HA responses, relied on signaling through Fc-gamma receptors. These studies suggest that circulating antibodies inhibit de novo B cell responses in an antigen-specific manner, which likely contributes to differences in antibody specificities elicited during primary and secondary influenza virus exposures.IMPORTANCEMost humans are exposed to influenza viruses in childhood and then subsequently exposed to antigenically drifted influenza variants later in life. It is unclear if antibodies elicited by earlier influenza virus exposures impact immunity against new influenza virus strains. Here, we used a mouse model to investigate how an anti-hemagglutinin (HA) monoclonal antibody (mAb) affects de novo B cell and antibody responses to the protein targeted by the monoclonal antibody (HA) and a second protein not targeted by the monoclonal antibody [neuraminidase (NA)]. Collectively, our studies suggest that circulating anti-influenza virus antibodies can potently modulate the magnitude and specificity of antibody responses elicited by secondary influenza virus exposures.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Vacunas contra la Influenza / Linfocitos B / Glicoproteínas Hemaglutininas del Virus de la Influenza / Anticuerpos Monoclonales / Anticuerpos Antivirales Límite: Animals Idioma: En Revista: J Virol Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Vacunas contra la Influenza / Linfocitos B / Glicoproteínas Hemaglutininas del Virus de la Influenza / Anticuerpos Monoclonales / Anticuerpos Antivirales Límite: Animals Idioma: En Revista: J Virol Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos