Your browser doesn't support javascript.
loading
Myotube formation on micropatterns guiding by centripetal cellular motility and crowding.
Gao, Jie; Sun, Xiang; Ma, Yanning; Qin, Wen; Li, Jin; Jin, Zuolin; Qiu, Jun; Zhang, Hao.
Afiliación
  • Gao J; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
  • Sun X; Department of Stomatology, The First Hospital of Yulin, Yulin, 719000, China.
  • Ma Y; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
  • Qin W; Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.
  • Li J; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
  • Jin Z; Department of Infectious Diseases, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China.
  • Qiu J; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
  • Zhang H; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University,
Mater Today Bio ; 28: 101195, 2024 Oct.
Article en En | MEDLINE | ID: mdl-39205872
ABSTRACT
The physical microenvironment, including substrate rigidity and topology, impacts myoblast differentiation and myotube maturation. However, the interplay effect and physical mechanism of mechanical stimuli on myotube formation is poorly understood. In this study, we utilized elastic substrates, microcontact patterning technique, and particle image velocimetry to investigate the effect of substrate rigidity and topological constraints on myoblast behaviors. Our findings suggested the interplay of substrate stiffness and cellular confinement improved the myotube formation by inducing centripetal cellular motility. These results shed light on the impact of the topological substrate on myoblast differentiation and emphasize the critical role of asymmetrical cell motility during this process, which is highly correlated with cell movement and crowding. Our research provides insights into the intricate interplay between substrate properties, cell motility, and myotube formation during myogenesis. Understanding these mechanisms could trigger tissue engineering strategies and therapies to enhance muscle regeneration and function.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Mater Today Bio Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Mater Today Bio Año: 2024 Tipo del documento: Article País de afiliación: China