Your browser doesn't support javascript.
loading
Flexible Temperature Sensor with High Reproducibility and Wireless Closed-Loop System for Decoupled Multimodal Health Monitoring and Personalized Thermoregulation.
Zhang, Xujing; Chen, Jiaxiang; Zheng, Zhihao; Tang, Songsong; Cheng, Bin; Zhang, Zhiwei; Ma, Rui; Chen, Zetong; Zhuo, Jingting; Cao, Lingyun; Chen, Zhihong; He, Jiangfeng; Wang, Xiaofeng; Yang, Guowei; Yi, Fang.
Afiliación
  • Zhang X; School of Materials Science and Engineering, Nanotechnology Research Center, State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
  • Chen J; School of Materials Science and Engineering, Nanotechnology Research Center, State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
  • Zheng Z; State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China.
  • Tang S; School of Materials Science and Engineering, Nanotechnology Research Center, State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
  • Cheng B; School of Materials Science and Engineering, Nanotechnology Research Center, State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
  • Zhang Z; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China.
  • Ma R; School of Materials Science and Engineering, Nanotechnology Research Center, State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
  • Chen Z; School of Materials Science and Engineering, Nanotechnology Research Center, State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
  • Zhuo J; School of Materials Science and Engineering, Nanotechnology Research Center, State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
  • Cao L; School of Materials Science and Engineering, Nanotechnology Research Center, State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
  • Chen Z; School of Materials Science and Engineering, Nanotechnology Research Center, State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
  • He J; School of Materials Science and Engineering, Nanotechnology Research Center, State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
  • Wang X; State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China.
  • Yang G; School of Materials Science and Engineering, Nanotechnology Research Center, State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
  • Yi F; School of Materials Science and Engineering, Nanotechnology Research Center, State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
Adv Mater ; : e2407859, 2024 Sep 02.
Article en En | MEDLINE | ID: mdl-39223852
ABSTRACT
Temperature and pulse waves are two fundamental indicators of body health. Specifically, thermoresistive flexible temperature sensors are one of the most applied sensors. However, they suffer from poor reproducibility of resistivity; and decoupling temperature from pressure/strain is still challenging. Besides, autonomous thermoregulation by wearable sensory systems is in high demand, but conventional commercial apparatuses are cumbersome and not suitable for long-term portable use. Here, a material-design strategy is developed to overcome the problem of poor reproducibility of resistivity by tuning the thermal expansion coefficient to nearly zero, precluding the detriment caused by shape expansion/shrinkage with temperature variation and achieving high reproducibility. The strategy also obtains more reliable sensitivity and higher stability, and the designed thermoresistive fiber has strain-insensitive sensing performance and fast response/recovery time. A smart textile woven by the thermoresistive fiber can decouple temperature and pulse without crosstalk; and a flexible wireless closed-loop system comprising the smart textile, a heating textile, a flexible diminutive control patch, and a smartphone is designed and constructed to monitor health status in real-time and autonomously regulate body temperature. This work offers a new route to circumvent temperature-sensitive effects for flexible sensors and new insights for personalized thermoregulation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article