Your browser doesn't support javascript.
loading
Kinetic Monte Carlo simulation analysis of the conductance drift in Multilevel HfO2-based RRAM devices.
Maldonado, D; Baroni, A; Aldana, S; Dorai Swamy Reddy, K; Pechmann, S; Wenger, C; Roldán, J B; Pérez, E.
Afiliación
  • Maldonado D; IHP-Leibniz-Institut für innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany.
  • Baroni A; IHP-Leibniz-Institut für innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany.
  • Aldana S; Tyndall National Institute, Lee Maltings Complex Dyke Parade, Cork, Cork, T12 R5CP, Ireland.
  • Dorai Swamy Reddy K; IHP-Leibniz-Institut für innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany.
  • Pechmann S; Chair of Micro- and Nanosystems Technology, Technical University of Munich, Munich, Germany.
  • Wenger C; IHP-Leibniz-Institut für innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany.
  • Roldán JB; Brandenburgische Technische Universität (BTU) Cottbus-Senftenberg, 03046 Cottbus, Germany.
  • Pérez E; Departamento de Electrónica y Tecnología de Computadores, Universidad de Granada, Facultad de Ciencias, 18071 Granada, Spain. jroldan@ugr.es.
Nanoscale ; 16(40): 19021-19033, 2024 Oct 17.
Article en En | MEDLINE | ID: mdl-39300795
ABSTRACT
The drift characteristics of valence change memory (VCM) devices have been analyzed through both experimental analysis and 3D kinetic Monte Carlo (kMC) simulations. By simulating six distinct low-resistance states (LRS) over a 24-hour period at room temperature, we aim to assess the device temporal stability and retention. Our results demonstrate the feasibility of multi-level operation and reveal insights into the conductive filament (CF) dynamics. The cumulative distribution functions (CDFs) of read-out currents measured at different time intervals provide a comprehensive view of the device performance for the different conductance levels. These findings not only enhance the understanding of VCM device switching behaviour but also allow the development of strategies for improving retention, thereby advancing the development of reliable nonvolatile resistive switching memory technologies.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2024 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2024 Tipo del documento: Article País de afiliación: Alemania