Your browser doesn't support javascript.
loading
Salinity-Induced Photorespiration in Populus Vascular Tissues Facilitate Nitrogen Reallocation.
Wilhelmi, Maria Del Mar Rubio; Maneejantra, Nuchada; Balasubramanian, Vimal Kumar; Purvine, Samuel O; Williams, Sarai; DiFazio, Stephen; Stewart, C Neal; Ahkami, Amir H; Blumwald, Eduardo.
Afiliación
  • Wilhelmi MDMR; Department of Plant Sciences, University of California, Davis, California, USA.
  • Maneejantra N; Department of Plant Sciences, University of California, Davis, California, USA.
  • Balasubramanian VK; Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA.
  • Purvine SO; Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA.
  • Williams S; Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA.
  • DiFazio S; Department of Biology, West Virginia University, Morgantown, West Virginia, USA.
  • Stewart CN; Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, USA.
  • Ahkami AH; Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, Tennessee, USA.
  • Blumwald E; Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA.
Plant Cell Environ ; 2024 Oct 01.
Article en En | MEDLINE | ID: mdl-39351842
ABSTRACT
Adaptation to abiotic stress is critical for the survival of perennial tree species. Salinity affects plant growth and productivity by interfering with major biosynthetic processes. Detrimental effects of salinity may vary between different plant tissues and cell types. However, spatial molecular mechanisms controlling plant responses to salinity stress are not yet thoroughly understood in perennial trees. We used laser capture microdissection in clones of Populus tremula x alba to isolate palisade and vascular cells of intermediary leaf from plants exposed to 150 mM NaCl for 10 days, followed by a recovery period. Cell-specific changes in proteins and metabolites were determined. Salinity induced a vascular-specific accumulation of proteins associated with photorespiration, and the accumulation of serine, 3-phosphoglycerate and NH4 + suggesting changes in N metabolism. Accumulation of the GLUTAMINE SYNTHETASE 2 protein, and increased GS1.1 gene expression, indicated that NH4 + produced in photorespiration was assimilated to glutamine, the main amino acid translocated in Populus trees. Further analysis of total soluble proteins in stems and roots showed the accumulation of bark storage proteins induced by the salinity treatments. Collectively, our results suggest that the salt-induced photorespiration in vascular cells mediates N-reallocation in Populus, an essential process for the adaptation of trees to adverse conditions.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Plant Cell Environ Asunto de la revista: BOTANICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Plant Cell Environ Asunto de la revista: BOTANICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos