Your browser doesn't support javascript.
loading
Multiobjective optimization of combinatorial libraries.
Agrafiotis, D K.
Afiliação
  • Agrafiotis DK; 3-Dimensional Pharmaceuticals, Inc., 665 Stockton Drive, Suite 104, Exton, Pennsylvania 19341, USA. dimitris.agrafiotis@3dp.com
J Comput Aided Mol Des ; 16(5-6): 335-56, 2002.
Article em En | MEDLINE | ID: mdl-12489683
Combinatorial chemistry and high-throughput screening have caused a fundamental shift in the way chemists contemplate experiments. Designing a combinatorial library is a controversial art that involves a heterogeneous mix of chemistry, mathematics, economics, experience, and intuition. Although there seems to be little agreement as to what constitutes an ideal library, one thing is certain: only one property or measure seldom defines the quality of the design. In most real-world applications, a good experiment requires the simultaneous optimization of several, often conflicting, design objectives, some of which may be vague and uncertain. In this paper, we discuss a class of algorithms for subset selection rooted in the principles of multiobjective optimization. Our approach is to employ an objective function that encodes all of the desired selection criteria, and then use a simulated annealing or evolutionary approach to identify the optimal (or a nearly optimal) subset from among the vast number of possibilities. Many design criteria can be accommodated, including diversity, similarity to known actives, predicted activity and/or selectivity determined by quantitative structure-activity relationship (QSAR) models or receptor binding models, enforcement of certain property distributions, reagent cost and availability, and many others. The method is robust, convergent, and extensible, offers the user full control over the relative significance of the various objectives in the final design, and permits the simultaneous selection of compounds from multiple libraries in full- or sparse-array format.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas de Química Combinatória Tipo de estudo: Prognostic_studies Idioma: En Revista: J Comput Aided Mol Des Assunto da revista: BIOLOGIA MOLECULAR / ENGENHARIA BIOMEDICA Ano de publicação: 2002 Tipo de documento: Article País de afiliação: Estados Unidos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas de Química Combinatória Tipo de estudo: Prognostic_studies Idioma: En Revista: J Comput Aided Mol Des Assunto da revista: BIOLOGIA MOLECULAR / ENGENHARIA BIOMEDICA Ano de publicação: 2002 Tipo de documento: Article País de afiliação: Estados Unidos