Your browser doesn't support javascript.
loading
Synthesis, X-ray powder structure, and magnetic properties of the new, weak ferromagnet iron(II) phenylphosphonate.
Bellitto, C; Federici, F; Altomare, A; Rizzi, R; Ibrahim, S A.
Afiliação
  • Bellitto C; CNR-Istituto di Chimica dei Materiali, Area della Ricerca di Montelibretti, Via Salaria Km. 29.5, C.P.10, I-00016 Monterotondo Staz., Roma, Italy.
Inorg Chem ; 39(8): 1803-8, 2000 Apr 17.
Article em En | MEDLINE | ID: mdl-12526572
ABSTRACT
A new molecule-based weak ferromagnet of formula Fe[C6H5PO3].H2O was synthesized. It was characterized by thermogravimetric analysis and UV-visible and infrared spectroscopy, and the magnetic properties were studied using a superconducting quantum interference device magnetometer. The crystal structure of the compound was determined "ab initio" from X-ray powder diffraction data and refined by the Rietveld method. The crystals of Fe[C6H5PO3].H2O are orthorhombic, space group Pmn2(1), with a = 5.668(8) A, b = 14.453(2) A, c = 4.893(7) A, and Z = 2. The title compound is isostructural with the previously reported lamellar M[C6H5PO3].H2O, M = Mn(II), Zn(II), and Cd(II). The inorganic layers are made of Fe(II) ions octahedrally coordinated by five phosphonate oxygen atoms and one from oxygen of the water molecule. These layers are then separated by bilayers of the phenyl groups, and van der Waals contacts are established between them. The refinement has shown that the phenyl rings are disordered in the lattice. The oxidation state of the metal ion is +2, and the electronic configuration is d6 (S = 2) high-spin, as determined from dc magnetic susceptibility measurements from 150 K to room temperature. Below 100 K, the magnetic moment of Fe[C6H5PO3].H2O rises rapidly to a maximum at TN = 21.5 K, and then it decreases again. The peak at TN is associated with the 3D antiferromagnetic long-range ordering. Below the critical temperature, the title compound behaves as a "weak" ferromagnet, which represents the third type of magnetic materials characterized by having a finite zero-field magnetization, ferromagnets and ferrimagnets being the other two types. The large coercive field (i.e., 6400 G) observed in the hysteresis loop at T = 10 K is rare in molecule-based materials; it can be ascribed to a pronounced spin-orbit coupling for the 5T2g ground state of the Fe(II) ion in the octahedral environment.
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Inorg Chem Ano de publicação: 2000 Tipo de documento: Article País de afiliação: Itália
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Inorg Chem Ano de publicação: 2000 Tipo de documento: Article País de afiliação: Itália