The role of 17beta-hydroxysteroid dehydrogenases in modulating the activity of 2-methoxyestradiol in breast cancer cells.
Cancer Res
; 66(1): 324-30, 2006 Jan 01.
Article
em En
| MEDLINE
| ID: mdl-16397246
The bis-sulfamoylated derivative of 2-methoxyestradiol (2-MeOE2), 2-methoxyestradiol-3,17-O,O-bis-sulfamate (2-MeOE2bisMATE), has shown potent antiproliferative and antiangiogenic activity in vitro and inhibits tumor growth in vivo. 2-MeOE2bisMATE is bioavailable, in contrast to 2-MeOE2 that has poor bioavailability. In this study, we have examined the role of 17beta-hydroxysteroid dehydrogenase (17beta-HSD) type 2 in the metabolism of 2-MeOE2. In MDA-MB-231 cells, which express high levels of 17beta-HSD type 2, and in MCF-7 cells transfected with 17beta-HSD type 2, high-performance liquid chromatography analysis showed that a significant proportion of 2-MeOE2 was metabolized to inactive 2-methoxyestrone. Furthermore, MCF-7 cells transfected with 17beta-HSD type 2 were protected from the cytotoxic effects of 2-MeOE2. In contrast, no significant metabolism of 2-MeOE2bisMATE was detected in transfected cells and 17beta-HSD type 2 transfection did not offer protection against 2-MeOE2bisMATE cytotoxicity. This study may go some way to explaining the poor bioavailability of 2-MeOE2, as the gastrointestinal mucosa expresses high levels of 17beta-HSD type 2. In addition, this study shows the value of synthesizing sulfamoylated derivatives of 2-MeOE2 with C17-position modifications as these compounds have improved bioavailability and potency both in vitro and in vivo.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Neoplasias da Mama
/
Estradiol
/
17-Hidroxiesteroide Desidrogenases
Limite:
Humans
Idioma:
En
Revista:
Cancer Res
Ano de publicação:
2006
Tipo de documento:
Article
País de afiliação:
Reino Unido