Your browser doesn't support javascript.
loading
Site-specific interactions of Cu(II) with alpha and beta-synuclein: bridging the molecular gap between metal binding and aggregation.
Binolfi, Andrés; Lamberto, Gonzalo R; Duran, Rosario; Quintanar, Liliana; Bertoncini, Carlos W; Souza, Jose M; Cerveñansky, Carlos; Zweckstetter, Markus; Griesinger, Christian; Fernández, Claudio O.
Afiliação
  • Binolfi A; Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina.
J Am Chem Soc ; 130(35): 11801-12, 2008 Sep 03.
Article em En | MEDLINE | ID: mdl-18693689
ABSTRACT
The aggregation of alpha-synuclein (AS) is a critical step in the etiology of Parkinson's disease (PD) and other neurodegenerative synucleinopathies. Protein-metal interactions play a critical role in AS aggregation and might represent the link between the pathological processes of protein aggregation and oxidative damage. Our previous studies established a hierarchy in AS-metal ion interactions, where Cu(II) binds specifically to the protein and triggers its aggregation under conditions that might be relevant for the development of PD. In this work, we have addressed unresolved structural details related to the binding specificity of Cu(II) through the design of site-directed and domain-truncated mutants of AS and by the characterization of the metal-binding features of its natural homologue beta-synuclein (BS). The structural properties of the Cu(II) complexes were determined by the combined application of nuclear magnetic resonance, electron paramagnetic resonance, UV-vis, circular dichroism spectroscopy, and matrix-assisted laser desorption ionization mass spectrometry (MALDI MS). Two independent, noninteracting copper-binding sites with significantly different affinities for the metal ion were detected in the N-terminal regions of AS and BS. MALDI MS provided unique evidence for the direct involvement of Met1 as the primary anchoring residue for Cu(II) in both proteins. Comparative spectroscopic analysis of the two proteins allowed us to deconvolute the Cu(II) binding modes and unequivocally assign the higher-affinity site to the N-terminal amino group of Met1 and the lower-affinity site to the imidazol ring of the sole His residue. Through the use of competitive chelators, the affinity of the first equivalent of bound Cu(II) was accurately determined to be in the submicromolar range for both AS and BS. Our results prove that Cu(II) binding in the C-terminal region of synucleins represents a nonspecific, very low affinity process. These new insights into the bioinorganic chemistry of PD are central to an understanding of the role of Cu(II) in the fibrillization process of AS and have implications for the molecular mechanism by which BS might inhibit AS amyloid assembly.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cobre / Alfa-Sinucleína / Beta-Sinucleína / Metaloproteínas Idioma: En Revista: J Am Chem Soc Ano de publicação: 2008 Tipo de documento: Article País de afiliação: Argentina

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cobre / Alfa-Sinucleína / Beta-Sinucleína / Metaloproteínas Idioma: En Revista: J Am Chem Soc Ano de publicação: 2008 Tipo de documento: Article País de afiliação: Argentina