Your browser doesn't support javascript.
loading
Oncolytic adenoviral mutants with E1B19K gene deletions enhance gemcitabine-induced apoptosis in pancreatic carcinoma cells and anti-tumor efficacy in vivo.
Leitner, Stephan; Sweeney, Katrina; Oberg, Daniel; Davies, Derek; Miranda, Enrique; Lemoine, Nick R; Halldén, Gunnel.
Afiliação
  • Leitner S; Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK.
Clin Cancer Res ; 15(5): 1730-40, 2009 Mar 01.
Article em En | MEDLINE | ID: mdl-19223497
ABSTRACT

PURPOSE:

Pancreatic adenocarcinoma is a rapidly progressive malignancy that is highly resistant to current chemotherapeutic modalities and almost uniformly fatal. We show that a novel targeting strategy combining oncolytic adenoviral mutants with the standard cytotoxic treatment, gemcitabine, can markedly improve the anticancer potency. EXPERIMENTAL

DESIGN:

Adenoviral mutants with the E1B19K gene deleted with and without E3B gene expression (AdDeltaE1B19K and dl337 mutants, respectively) were assessed for synergistic interactions in combination with gemcitabine. Cell viability, mechanism of cell death, and antitumor efficacy in vivo were determined in the pancreatic carcinoma cells PT45 and Suit2, normal human bronchial epithelial cells, and in PT45 xenografts.

RESULTS:

The DeltaE1B19K-deleted mutants synergized with gemcitabine to selectively kill cultured pancreatic cancer cells and xenografts in vivo with no effect in normal cells. The corresponding wild-type virus (Ad5) stimulated drug-induced cell killing to a lesser degree. Gemcitabine blocked replication of all viruses despite the enhanced cell killing activity due to gemcitabine-induced delay in G1/S-cell cycle progression, with repression of cyclin E and cdc25A, which was not abrogated by viral E1A-expression. Synergistic cell death occurred through enhancement of gemcitabine-induced apoptosis in the presence of both AdDeltaE1B19K and dl337 mutants, shown by increased cell membrane fragmentation, caspase-3 activation, and mitochondrial dysfunction.

CONCLUSIONS:

Our data suggest that oncolytic mutants lacking the antiapoptotic E1B19K gene can improve efficacy of DNA-damaging drugs such as gemcitabine through convergence on cellular apoptosis pathways. These findings imply that less toxic doses than currently practiced in the clinic could efficiently target pancreatic adenocarcinomas when combined with adenoviral mutants.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Pancreáticas / Adenocarcinoma / Adenoviridae / Deleção de Genes / Apoptose / Proteínas E1B de Adenovirus / Desoxicitidina / Vírus Oncolíticos / Mutação Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Clin Cancer Res Assunto da revista: NEOPLASIAS Ano de publicação: 2009 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Pancreáticas / Adenocarcinoma / Adenoviridae / Deleção de Genes / Apoptose / Proteínas E1B de Adenovirus / Desoxicitidina / Vírus Oncolíticos / Mutação Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Clin Cancer Res Assunto da revista: NEOPLASIAS Ano de publicação: 2009 Tipo de documento: Article País de afiliação: Reino Unido