Your browser doesn't support javascript.
loading
Optical emission of biaxial ZnO-ZnS nanoribbon heterostructures.
Murphy, M W; Zhou, X T; Ko, J Y P; Zhou, J G; Heigl, F; Sham, T K.
Afiliação
  • Murphy MW; Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada.
J Chem Phys ; 130(8): 084707, 2009 Feb 28.
Article em En | MEDLINE | ID: mdl-19256619
ABSTRACT
The electronic structure and optical properties of biaxial ZnO-ZnS heterostructure nanoribbons (NRs) have been investigated using x-ray absorption near-edge structures (XANES) and x-ray excited optical luminescence (XEOL). The XANES were recorded in total electron yield and wavelength-selected photoluminescence yield across the K- and L(3,2)-edges of zinc and sulfur and the K-edge of oxygen. The XEOL from the NRs exhibit a very weak band-gap emission at 392 nm and two intense defect emissions at 491 and 531 nm. The synchrotron x-ray pulse ( approximately 100 ps, 153 ns repetition rate) was used to track the optical decay dynamics from ZnO-ZnS NR, which can be described by two lifetimes (7.6 and 55 ns). Comparison with similar measurements for ZnO and ZnS nanowires reveals that the luminescence from ZnO-ZnS NRs was dominated by the ZnO component of the NR as the ZnS component contributes little. The implication of this observation is discussed.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2009 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2009 Tipo de documento: Article País de afiliação: Canadá