Role of the sigmaD-dependent autolysins in Bacillus subtilis population heterogeneity.
J Bacteriol
; 191(18): 5775-84, 2009 Sep.
Article
em En
| MEDLINE
| ID: mdl-19542270
Exponentially growing populations of Bacillus subtilis contain two morphologically and functionally distinct cell types: motile individuals and nonmotile multicellular chains. Motility differentiation arises because RNA polymerase and the alternative sigma factor sigma(D) activate expression of flagellin in a subpopulation of cells. Here we demonstrate that the peptidoglycan-remodeling autolysins under sigma(D) control, LytC, LytD, and LytF, are expressed in the same subpopulation of cells that complete flagellar synthesis. Morphological heterogeneity is explained by the expression of LytF that is necessary and sufficient for cell separation. Moreover, LytC is required for motility but not at the level of cell separation or flagellum biosynthesis. Rather, LytC appears to be important for flagellar function, and motility was restored to a LytC mutant by mutation of either lonA, encoding the LonA protease, or a gene encoding a previously unannotated swarming motility inhibitor, SmiA. We conclude that heterogeneous activation of sigma(D)-dependent gene expression is sufficient to explain both the morphological heterogeneity and functional heterogeneity present in vegetative B. subtilis populations.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Fator sigma
/
Bacillus subtilis
/
Regulação Bacteriana da Expressão Gênica
/
N-Acetil-Muramil-L-Alanina Amidase
Idioma:
En
Revista:
J Bacteriol
Ano de publicação:
2009
Tipo de documento:
Article
País de afiliação:
Estados Unidos