Your browser doesn't support javascript.
loading
A simple and rapid method for identifying and semi-quantifying peptide hormones in isolated pancreatic islets by direct-tissue matrix-assisted laser desorption ionization time-of-flight mass spectrometry.
Stewart, Kevin W; Phillips, Anthony R J; Whiting, Lynda; Jüllig, Mia; Middleditch, Martin J; Cooper, Garth J S.
Afiliação
  • Stewart KW; The Waikato Institute of Technology, Hamilton, New Zealand.
Rapid Commun Mass Spectrom ; 25(22): 3387-95, 2011 Nov 30.
Article em En | MEDLINE | ID: mdl-22002691
ABSTRACT
We describe a new, simple, robust and efficient method based on direct-tissue matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry that enables consistent semi-quantitation of peptide hormones in isolated pancreatic islets from normal and diabetic rodents. Prominent signals were measured that corresponded to all the main peptide hormones present in islet-endocrine cells (α-cells) glucagon, glicentin-related polypeptide/GRPP; (ß-cells) insulin I, insulin II, C-peptide I, C-peptide II, amylin; (δ-cells) somatostatin-14; and (PP-cells), and pancreatic polypeptide. The signal ratios coincided with known relative hormone abundances. The method demonstrated that severe insulin deficiency is accompanied by elevated levels of all non-ß-cell-hormones in diabetic rat islets, consistent with alleviation of paracrine suppression of hormone production by non-ß-cells. It was also effective in characterizing hormonal phenotype in hemizygous human-amylin transgenic mice that express human and mouse amylin in approx. equimolar quantities. Finally, the method demonstrated utility in basic peptide-hormone discovery by identifying a prominent new Gcg-gene-derived peptide (theoretical monoisotopic molecular weight 3263.5 Da), closely related to but distinct from GRPP, in diabetic islets. This peptide, whose sequence is HAPQDTEENARSFPASQTEPLEDPNQINE in Rattus norvegicus, could be a peptide hormone whose roles in physiology and metabolic disease warrant further investigation. This method provides a powerful new approach that could provide important new insights into the physiology and regulation of peptide hormones in islets and other endocrine tissues. It has potentially wide-ranging applications that encompass endocrinology, pharmacology, phenotypic analysis in genetic models of metabolic disease, and hormone discovery, and could also effectively limit the numbers of animals required for such studies.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hormônios Pancreáticos / Ilhotas Pancreáticas / Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz / Análise de Sequência de Proteína Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Revista: Rapid Commun Mass Spectrom Ano de publicação: 2011 Tipo de documento: Article País de afiliação: Nova Zelândia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hormônios Pancreáticos / Ilhotas Pancreáticas / Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz / Análise de Sequência de Proteína Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Revista: Rapid Commun Mass Spectrom Ano de publicação: 2011 Tipo de documento: Article País de afiliação: Nova Zelândia