Your browser doesn't support javascript.
loading
Measuring relative grain-boundary energies in block-copolymer microstructures.
Ryu, Hyung Ju; Fortner, David B; Rohrer, Gregory S; Bockstaller, Michael R.
Afiliação
  • Ryu HJ; Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, USA.
Phys Rev Lett ; 108(10): 107801, 2012 Mar 09.
Article em En | MEDLINE | ID: mdl-22463454
The (relative) energies of symmetric tilt grain boundaries in a strongly segregated lamellar block copolymer are determined by analysis of the dihedral angles at grain-boundary triple junctions. The analysis reveals two regimes: at low and intermediate misorientations (corresponding to a tilt-angle range 0≤θ≤85°) the grain-boundary energy is found to depend on the tilt angle as E(θ)∼θ(x), with 2.5>x≥0. At large misorientations the grain-boundary energy is found to be independent (within the experimental uncertainty) of the angle of tilt. The transition between the two scaling regimes is accompanied by the transition of the grain-boundary structure from the chevron to the omega morphology. Grain-boundary energy and frequency are found to be inversely related, thus suggesting boundary energy to be an important parameter during grain coarsening in block-copolymer microstructures, as it is in inorganic polycrystalline microstructures.
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Estados Unidos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Estados Unidos