Your browser doesn't support javascript.
loading
Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction.
Wankel, Scott D; Adams, Melissa M; Johnston, David T; Hansel, Colleen M; Joye, Samantha B; Girguis, Peter R.
Afiliação
  • Wankel SD; Department of Organismic and Evolutionary Biology, Harvard University School of Engineering and Applied Science, Harvard University, Cambridge, MA 01238, USA.
Environ Microbiol ; 14(10): 2726-40, 2012 Oct.
Article em En | MEDLINE | ID: mdl-22827909
The anaerobic oxidation of methane (AOM) is a globally significant sink that regulates methane flux from sediments into the oceans and atmosphere. Here we examine mesophilic to thermophilic AOM in hydrothermal sediments recovered from the Middle Valley vent field, on the Juan de Fuca Ridge. Using continuous-flow sediment bioreactors and batch incubations, we characterized (i) the degree to which AOM contributes to net dissolved inorganic carbon flux, (ii) AOM and sulfate reduction (SR) rates as a function of temperature and (iii) the distribution and density of known anaerobic methanotrophs (ANMEs). In sediment bioreactors, inorganic carbon stable isotope mass balances results indicated that AOM accounted for between 16% and 86% of the inorganic carbon produced, underscoring the role of AOM in governing inorganic carbon flux from these sediments. At 90°C, AOM occurred in the absence of SR, demonstrating a striking decoupling of AOM from SR. An abundance of Fe(III)-bearing minerals resembling mixed valent Fe oxides, such as green rust, suggests the potential for a coupling of AOM to Fe(III) reduction in these metalliferous sediments. While SR bacteria were only observed in cooler temperature sediments, ANMEs allied to ANME-1 ribotypes, including a putative ANME-1c group, were found across all temperature regimes and represented a substantial proportion of the archaeal community. In concert, these results extend and reshape our understanding of the nature of high temperature methane biogeochemistry, providing insight into the physiology and ecology of thermophilic anaerobic methanotrophy and suggesting that AOM may play a central role in regulating biological dissolved inorganic carbon fluxes to the deep ocean from the organic-poor, metalliferous sediments of the global mid-ocean ridge hydrothermal vent system.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sulfatos / Carbono / Archaea / Sedimentos Geológicos / Ciclo do Carbono / Metano Idioma: En Revista: Environ Microbiol Assunto da revista: MICROBIOLOGIA / SAUDE AMBIENTAL Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sulfatos / Carbono / Archaea / Sedimentos Geológicos / Ciclo do Carbono / Metano Idioma: En Revista: Environ Microbiol Assunto da revista: MICROBIOLOGIA / SAUDE AMBIENTAL Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Estados Unidos