Your browser doesn't support javascript.
loading
Recovery from disturbance requires resynchronization of ecosystem nutrient cycles.
Rastetter, E B; Yanai, R D; Thomas, R Q; Vadeboncoeur, M A; Fahey, T J; Fisk, M C; Kwiatkowski, B L; Hamburg, S P.
Afiliação
  • Rastetter EB; The Ecosystems Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA. erastett@mbl.edu
Ecol Appl ; 23(3): 621-42, 2013 Apr.
Article em En | MEDLINE | ID: mdl-23734490
ABSTRACT
Nitrogen (N) and phosphorus (P) are tightly cycled in most terrestrial ecosystems, with plant uptake more than 10 times higher than the rate of supply from deposition and weathering. This near-total dependence on recycled nutrients and the stoichiometric constraints on resource use by plants and microbes mean that the two cycles have to be synchronized such that the ratio of NP in plant uptake, litterfall, and net mineralization are nearly the same. Disturbance can disrupt this synchronization if there is a disproportionate loss of one nutrient relative to the other. We model the resynchronization of N and P cycles following harvest of a northern hardwood forest. In our simulations, nutrient loss in the harvest is small relative to postharvest losses. The low NP ratio of harvest residue results in a preferential release of P and retention of N. The P release is in excess of plant requirements and P is lost from the active ecosystem cycle through secondary mineral formation and leaching early in succession. Because external P inputs are small, the resynchronization of the N and P cycles later in succession is achieved by a commensurate loss of N. Through succession, the ecosystem undergoes alternating periods of N limitation, then P limitation, and eventually co-limitation as the two cycles resynchronize. However, our simulations indicate that the overall rate and extent of recovery is limited by P unless a mechanism exists either to prevent the P loss early in succession (e.g., P sequestration not stoichiometrically constrained by N) or to increase the P supply to the ecosystem later in succession (e.g., biologically enhanced weathering). Our model provides a heuristic perspective from which to assess the resynchronization among tightly cycled nutrients and the effect of that resynchronization on recovery of ecosystems from disturbance.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fósforo / Simulação por Computador / Ecossistema / Ciclo do Nitrogênio / Modelos Teóricos / Nitrogênio Tipo de estudo: Prognostic_studies Idioma: En Revista: Ecol Appl Ano de publicação: 2013 Tipo de documento: Article País de afiliação: Estados Unidos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fósforo / Simulação por Computador / Ecossistema / Ciclo do Nitrogênio / Modelos Teóricos / Nitrogênio Tipo de estudo: Prognostic_studies Idioma: En Revista: Ecol Appl Ano de publicação: 2013 Tipo de documento: Article País de afiliação: Estados Unidos