Your browser doesn't support javascript.
loading
A novel in vitro model to study alveologenesis.
Pieretti, Alberto C; Ahmed, Alwiya M; Roberts, Jesse D; Kelleher, Cassandra M.
Afiliação
  • Pieretti AC; 1 Department of Pediatric Surgery, MassGeneral Hospital for Children, Boston, Massachusetts.
Am J Respir Cell Mol Biol ; 50(2): 459-69, 2014 Feb.
Article em En | MEDLINE | ID: mdl-24066869
Many pediatric pulmonary diseases are associated with significant morbidity and mortality due to impairment of alveolar development. The lack of an appropriate in vitro model system limits the identification of therapies aimed at improving alveolarization. Herein, we characterize an ex vivo lung culture model that facilitates investigation of signaling pathways that influence alveolar septation. Postnatal Day 4 (P4) mouse pup lungs were inflated with 0.4% agarose, sliced, and cultured within a collagen matrix in medium that was optimized to support cell proliferation and promote septation. Lung slices were grown with and without 1D11, an active transforming growth factor-ß-neutralizing antibody. After 4 days, the lung sections (designated P4 + 4) and noncultured lung sections were examined using quantitative morphometry to assess alveolar septation and immunohistochemistry to evaluate cell proliferation and differentiation. We observed that the P4 + 4 lung sections exhibited ex vivo alveolarization, as evidenced by an increase in septal density, thinning of septal walls, and a decrease in mean linear intercept comparable to P8, age-matched, uncultured lungs. Moreover, immunostaining showed ongoing cell proliferation and differentiation in cultured lungs that were similar to P8 controls. Cultured lungs exposed to 1D11 had a distinct phenotype of decreased septal density when compared with untreated P4 + 4 lungs, indicating the utility of investigating signaling in these lung slices. These results indicate that this novel lung culture system is optimized to permit the investigation of pathways involved in septation, and potentially the identification of therapeutic targets that enhance alveolarization.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Alvéolos Pulmonares / Transdução de Sinais / Pulmão / Pneumopatias Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Am J Respir Cell Mol Biol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Alvéolos Pulmonares / Transdução de Sinais / Pulmão / Pneumopatias Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Am J Respir Cell Mol Biol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2014 Tipo de documento: Article