Your browser doesn't support javascript.
loading
A role for peroxisome proliferator-activated receptor γ coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth.
Martin, Ola J; Lai, Ling; Soundarapandian, Mangala M; Leone, Teresa C; Zorzano, Antonio; Keller, Mark P; Attie, Alan D; Muoio, Deborah M; Kelly, Daniel P.
Afiliação
  • Martin OJ; From the Diabetes and Obesity Research Center, Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL (O.J.M., L.L., M.M.S., T.C.L., D.P.K.); Institute for Research in Biomedicine, Barcelona, Spain (A.Z.); Department de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain (A.Z.); CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain (A.Z.); Department of Biochemistry, Univers
Circ Res ; 114(4): 626-36, 2014 Feb 14.
Article em En | MEDLINE | ID: mdl-24366168
ABSTRACT
RATIONALE Increasing evidence has shown that proper control of mitochondrial dynamics (fusion and fission) is required for high-capacity ATP production in the heart. Transcriptional coactivators, peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) α and PGC-1ß, have been shown to regulate mitochondrial biogenesis in the heart at the time of birth. The function of PGC-1 coactivators in the heart after birth has been incompletely understood.

OBJECTIVE:

Our aim was to assess the role of PGC-1 coactivators during postnatal cardiac development and in adult hearts in mice. METHODS AND

RESULTS:

Conditional gene targeting was used in mice to explore the role of PGC-1 coactivators during postnatal cardiac development and in adult hearts. Marked mitochondrial structural derangements were observed in hearts of PGC-1α/ß-deficient mice during postnatal growth, including fragmentation and elongation, associated with the development of a lethal cardiomyopathy. The expression of genes involved in mitochondrial fusion (Mfn1, Opa1) and fission (Drp1, Fis1) was altered in the hearts of PGC-1α/ß-deficient mice. PGC-lα was shown to directly regulate Mfn1 gene transcription by coactivating the estrogen-related receptor α on a conserved DNA element. Surprisingly, PGC-1α/ß deficiency in the adult heart did not result in evidence of abnormal mitochondrial dynamics or heart failure. However, transcriptional profiling demonstrated that PGC-1 coactivators are required for high-level expression of nuclear- and mitochondrial-encoded genes involved in mitochondrial dynamics and energy transduction in the adult heart.

CONCLUSIONS:

These results reveal distinct developmental stage-specific programs involved in cardiac mitochondrial dynamics.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Coração / Mitocôndrias Cardíacas / Cardiomiopatias Limite: Animals Idioma: En Revista: Circ Res Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Coração / Mitocôndrias Cardíacas / Cardiomiopatias Limite: Animals Idioma: En Revista: Circ Res Ano de publicação: 2014 Tipo de documento: Article