An in vivo model for analysis of developmental erythropoiesis and globin gene regulation.
FASEB J
; 28(5): 2306-17, 2014 May.
Article
em En
| MEDLINE
| ID: mdl-24443374
Expression of fetal γ-globin in adulthood ameliorates symptoms of ß-hemoglobinopathies by compensating for the mutant ß-globin. Reactivation of the silenced γ-globin gene is therefore of substantial clinical interest. To study the regulation of γ-globin expression, we created the GG mice, which carry an intact 183-kb human ß-globin locus modified to express enhanced green fluorescent protein (eGFP) from the Gγ-globin promoter. GG embryos express eGFP first in the yolk sac blood islands and then in the aorta-gonad mesonephros and the fetal liver, the sites of normal embryonic hematopoiesis. eGFP expression in erythroid cells peaks at E9.5 and then is rapidly silenced (>95%) and maintained at low levels into adulthood, demonstrating appropriate developmental regulation of the human ß-globin locus. In vitro knockdown of the epigenetic regulator DNA methyltransferase-1 in GG primary erythroid cells increases the proportion of eGFP(+) cells in culture from 41.9 to 74.1%. Furthermore, eGFP fluorescence is induced >3-fold after treatment of erythroid precursors with epigenetic drugs known to induce γ-globin expression, demonstrating the suitability of the Gγ-globin eGFP reporter for evaluation of γ-globin inducers. The GG mouse model is therefore a valuable model system for genetic and pharmacologic studies of the regulation of the ß-globin locus and for discovery of novel therapies for the ß-hemoglobinopathies.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Regulação da Expressão Gênica
/
Eritropoese
/
Gama-Globinas
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
FASEB J
Assunto da revista:
BIOLOGIA
/
FISIOLOGIA
Ano de publicação:
2014
Tipo de documento:
Article
País de afiliação:
Austrália