Your browser doesn't support javascript.
loading
Covariance adjustment for batch effect in gene expression data.
Lee, Jung Ae; Dobbin, Kevin K; Ahn, Jeongyoun.
Afiliação
  • Lee JA; Division of Public Health Sciences, Washington University in St. Louis, St. Louis, MO 63110, U.S.A.
Stat Med ; 33(15): 2681-95, 2014 Jul 10.
Article em En | MEDLINE | ID: mdl-24687561
Batch bias has been found in many microarray gene expression studies that involve multiple batches of samples. A serious batch effect can alter not only the distribution of individual genes but also the inter-gene relationships. Even though some efforts have been made to remove such bias, there has been relatively less development on a multivariate approach, mainly because of the analytical difficulty due to the high-dimensional nature of gene expression data. We propose a multivariate batch adjustment method that effectively eliminates inter-gene batch effects. The proposed method utilizes high-dimensional sparse covariance estimation based on a factor model and a hard thresholding. Another important aspect of the proposed method is that if it is known that one of the batches is produced in a superior condition, the other batches can be adjusted so that they resemble the target batch. We study high-dimensional asymptotic properties of the proposed estimator and compare the performance of the proposed method with some popular existing methods with simulated data and gene expression data sets.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Interpretação Estatística de Dados / Perfilação da Expressão Gênica / Análise em Microsséries Tipo de estudo: Prognostic_studies Limite: Female / Humans Idioma: En Revista: Stat Med Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Interpretação Estatística de Dados / Perfilação da Expressão Gênica / Análise em Microsséries Tipo de estudo: Prognostic_studies Limite: Female / Humans Idioma: En Revista: Stat Med Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos