Your browser doesn't support javascript.
loading
Molecular imaging using nanoparticle quenchers of Cerenkov luminescence.
Thorek, Daniel L J; Das, Sudeep; Grimm, Jan.
Afiliação
  • Thorek DL; Division of Nuclear Medicine, Department of Radiology and Radiological Sciences, The Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
Small ; 10(18): 3729-34, 2014 Sep 24.
Article em En | MEDLINE | ID: mdl-24861843
Cerenkov luminescence (CL) imaging is an emerging technique that collects the visible photons produced by radioisotopes. Here, molecular imaging strategies are investigated that switch the CL signal off. The noninvasive molecularly specific detection of cancer is demonstrated utilizing a combination of clinically approved agents, and their analogues. CL is modulated in vitro in a dose dependent manner using approved small molecules (Lymphazurin), as well as the clinically approved Feraheme and other preclinical superparamagnetic iron oxide nanoparticles (SPIO). To evaluate the quenching of CL in vivo, two strategies are pursued. [(18) F]-FDG is imaged by PET and CL in tumors prior to and following accumulation of nanoparticles. Initially, non-targeted particles are administered to mice bearing tumors in order to attenuate CL. For targeted imaging, a dual tumor model (expressing the human somatostatin receptor subtype-2 (hSSTr2) and a control negative cell line) is used. Targeting hSSTr2 with octreotate-conjugated SPIO, quenched CL enabling non-invasive distinction between tumors' molecular expression profiles is demonstrated. In this work, the quenching of Cerenkov emissions is demonstrated in several proof of principle models using a combination of approved agents and nanoparticle platforms to provide disease relevant information including tumor vascularity and specific antigen expression.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas Metálicas / Imagem Molecular Limite: Animals / Humans Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas Metálicas / Imagem Molecular Limite: Animals / Humans Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos