Your browser doesn't support javascript.
loading
Inhibitory effects of long noncoding RNA MEG3 on hepatic stellate cells activation and liver fibrogenesis.
He, Yong; Wu, Yu-Ting; Huang, Cheng; Meng, Xiao-Ming; Ma, Tao-Tao; Wu, Bao-Ming; Xu, Feng-Yun; Zhang, Lei; Lv, Xiong-Wen; Li, Jun.
Afiliação
  • He Y; School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical
  • Wu YT; School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical
  • Huang C; School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical
  • Meng XM; School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical
  • Ma TT; School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical
  • Wu BM; School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical
  • Xu FY; School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical
  • Zhang L; School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical
  • Lv XW; School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical
  • Li J; School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical
Biochim Biophys Acta ; 1842(11): 2204-15, 2014 Nov.
Article em En | MEDLINE | ID: mdl-25201080
ABSTRACT
Long noncoding RNAs (lncRNAs) are being increasingly recognized as major players in governing fundamental biological processes through diverse mechanisms. Maternally expressed gene 3 (MEG3) is an imprinted gene located at 14q32 that encodes a lncRNA correlated with several human cancers. Recently, the methylation-dependent downregulation of MEG3 has been described in liver cancers. However, its biological functional role in liver fibrosis remains unknown. In our study, MEG3 levels were remarkably decreased in CCl4-induced mouse liver fibrosis models and human fibrotic livers as demonstrated by real-time quantitative PCR. Moreover, the expression of MEG3 was downregulated in human hepatic stellate cell lines LX-2 cells in response to transforming growth factor-ß1 (TGF-ß1) stimulation in dose and time-dependent manner. Enforced expression of MEG3 in LX-2 cells inhibited TGF-ß1-induced cell proliferation, while promoting cell apoptosis. In addition, hypermethylation of MEG3 promoter was identified by methylation-specific PCR and MEG3 expression was robustly increased by the inhibition of methylation with either 5-aza-2-deoxycytidine (5-azadC), or siRNA to DNA methyltransferase 1 (DNMT1) in TGF-ß1-induced LX-2 cells. More importantly, overexpression of MEG3 could activate p53 and mediate cytochrome c release, subsequently leading to caspase-3-dependent apoptosis in TGF-ß1-treated LX-2 cells. These findings suggested that MEG3 may play an important role in stellate cell activation and liver fibrosis progression and act as a novel potential therapeutic target for liver fibrosis.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Biochim Biophys Acta Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Biochim Biophys Acta Ano de publicação: 2014 Tipo de documento: Article