Your browser doesn't support javascript.
loading
Linking increased airway hydration, ciliary beating, and mucociliary clearance through ENaC inhibition.
Åstrand, Annika B M; Hemmerling, Martin; Root, James; Wingren, Cecilia; Pesic, Jelena; Johansson, Edvin; Garland, Alaina L; Ghosh, Arunava; Tarran, Robert.
Afiliação
  • Åstrand AB; AstraZeneca R&D Mölndal, Mölndal, Sweden; annika.astrand@astrazeneca.com.
  • Hemmerling M; AstraZeneca R&D Mölndal, Mölndal, Sweden;
  • Root J; AstraZeneca R&D Mölndal, Mölndal, Sweden;
  • Wingren C; AstraZeneca R&D Mölndal, Mölndal, Sweden;
  • Pesic J; AstraZeneca R&D Mölndal, Mölndal, Sweden;
  • Johansson E; AstraZeneca R&D Mölndal, Mölndal, Sweden;
  • Garland AL; Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina.
  • Ghosh A; Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina.
  • Tarran R; Cystic Fibrosis/Pulmonary Research and Treatment Center, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina.
Am J Physiol Lung Cell Mol Physiol ; 308(1): L22-32, 2015 Jan 01.
Article em En | MEDLINE | ID: mdl-25361567
ABSTRACT
Airway dehydration causes mucus stasis and bacterial overgrowth in cystic fibrosis and chronic bronchitis (CB). Rehydration by hypertonic saline is efficacious but suffers from a short duration of action. We tested whether epithelial sodium channel (ENaC) inhibition would rehydrate normal and dehydrated airways to increase mucociliary clearance (MCC) over a significant time frame. For this, we used a tool compound (Compound A), which displays nanomolar ENaC affinity and retention in the airway surface liquid (ASL). Using normal human bronchial epithelial cultures (HBECs) grown at an air-liquid interface, we evaluated in vitro potency and efficacy using short-circuit current (I(sc)) and ASL height measurements where it inhibited I(sc) and increased ASL height by ∼ 50% (0.052 µM at 6 h), respectively. The in vivo efficacy was investigated in a modified guinea pig tracheal potential difference model, where we observed an effective dose (ED50) of 5 µg/kg (i.t.), and by MCC measures in rats and sheep, where we demonstrated max clearance rates at 100 µg/kg (i.t.) and 75 µg/kg (i.t.), respectively. Acute cigarette smoke-induced ASL height depletion in HBECs was used to mimic the situation in patients with CB, and pretreatment prevented both cigarette smoke-induced ASL dehydration and lessened the decrease in ciliary beat frequency. Furthermore, when added after cigarette smoke exposure, Compound A increased the rate of ASL rehydration. In conclusion, Compound A demonstrated significant effects and a link between increased airway hydration, ciliary function, and MCC. These data support the hypothesis that ENaC inhibition may be efficacious in the restoration of mucus hydration and transport in patients with CB.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fumar / Mucosa Respiratória / Canais Epiteliais de Sódio / Muco Limite: Animals / Female / Humans Idioma: En Revista: Am J Physiol Lung Cell Mol Physiol Assunto da revista: BIOLOGIA MOLECULAR / FISIOLOGIA Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fumar / Mucosa Respiratória / Canais Epiteliais de Sódio / Muco Limite: Animals / Female / Humans Idioma: En Revista: Am J Physiol Lung Cell Mol Physiol Assunto da revista: BIOLOGIA MOLECULAR / FISIOLOGIA Ano de publicação: 2015 Tipo de documento: Article