Your browser doesn't support javascript.
loading
Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation.
Matoba, Shogo; Liu, Yuting; Lu, Falong; Iwabuchi, Kumiko A; Shen, Li; Inoue, Azusa; Zhang, Yi.
Afiliação
  • Matoba S; Howard Hughes Medical Institute, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, Harvard Medical
  • Liu Y; Howard Hughes Medical Institute, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, Harvard Medical
  • Lu F; Howard Hughes Medical Institute, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, Harvard Medical
  • Iwabuchi KA; Howard Hughes Medical Institute, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, Harvard Medical
  • Shen L; Howard Hughes Medical Institute, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, Harvard Medical
  • Inoue A; Howard Hughes Medical Institute, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, Harvard Medical
  • Zhang Y; Howard Hughes Medical Institute, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, Harvard Medical
Cell ; 159(4): 884-95, 2014 Nov 06.
Article em En | MEDLINE | ID: mdl-25417163
ABSTRACT
Mammalian oocytes can reprogram somatic cells into a totipotent state enabling animal cloning through somatic cell nuclear transfer (SCNT). However, the majority of SCNT embryos fail to develop to term due to undefined reprogramming defects. Here, we identify histone H3 lysine 9 trimethylation (H3K9me3) of donor cell genome as a major barrier for efficient reprogramming by SCNT. Comparative transcriptome analysis identified reprogramming resistant regions (RRRs) that are expressed normally at 2-cell mouse embryos generated by in vitro fertilization (IVF) but not SCNT. RRRs are enriched for H3K9me3 in donor somatic cells and its removal by ectopically expressed H3K9me3 demethylase Kdm4d not only reactivates the majority of RRRs, but also greatly improves SCNT efficiency. Furthermore, use of donor somatic nuclei depleted of H3K9 methyltransferases markedly improves SCNT efficiency. Our study thus identifies H3K9me3 as a critical epigenetic barrier in SCNT-mediated reprogramming and provides a promising approach for improving mammalian cloning efficiency.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Histonas / Código das Histonas / Desenvolvimento Embrionário / Técnicas de Transferência Nuclear Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Cell Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Histonas / Código das Histonas / Desenvolvimento Embrionário / Técnicas de Transferência Nuclear Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Cell Ano de publicação: 2014 Tipo de documento: Article