Your browser doesn't support javascript.
loading
Linear energy relationships in ground state proton transfer and excited state proton-coupled electron transfer.
Gamiz-Hernandez, Ana P; Magomedov, Artiom; Hummer, Gerhard; Kaila, Ville R I.
Afiliação
  • Gamiz-Hernandez AP; Department Chemie, Technische Universität München (TUM) Lichtenbergstraße 4, D-85747 Garching, Germany.
J Phys Chem B ; 119(6): 2611-9, 2015 Feb 12.
Article em En | MEDLINE | ID: mdl-25485993
ABSTRACT
Proton-coupled electron transfer (PCET) processes are elementary chemical reactions involved in a broad range of radical and redox reactions. Elucidating fundamental PCET reaction mechanisms are thus of central importance for chemical and biochemical research. Here we use quantum chemical density functional theory (DFT), time-dependent density functional theory (TDDFT), and the algebraic diagrammatic-construction through second-order (ADC(2)) to study the mechanism, thermodynamic driving force effects, and reaction barriers of both ground state proton transfer (pT) and photoinduced proton-coupled electron transfer (PCET) between nitrosylated phenyl-phenol compounds and hydrogen-bonded t-butylamine as an external base. We show that the obtained reaction barriers for the ground state pT reactions depend linearly on the thermodynamic driving force, with a Brønsted slope of 1 or 0. Photoexcitation leads to a PCET reaction, for which we find that the excited state reaction barrier depends on the thermodynamic driving force with a Brønsted slope of 1/2. To support the mechanistic picture arising from the static potential energy surfaces, we perform additional molecular dynamics simulations on the excited state energy surface, in which we observe a spontaneous PCET between the donor and the acceptor groups. Our findings suggest that a Brønsted analysis may distinguish the ground state pT and excited state PCET processes.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Prótons / Teoria Quântica Tipo de estudo: Prognostic_studies Idioma: En Revista: J Phys Chem B Assunto da revista: QUIMICA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Prótons / Teoria Quântica Tipo de estudo: Prognostic_studies Idioma: En Revista: J Phys Chem B Assunto da revista: QUIMICA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Alemanha