Your browser doesn't support javascript.
loading
Protein kinase A directly phosphorylates metabotropic glutamate receptor 5 to modulate its function.
Uematsu, Ken; Heiman, Myriam; Zelenina, Marina; Padovan, Júlio; Chait, Brian T; Aperia, Anita; Nishi, Akinori; Greengard, Paul.
Afiliação
  • Uematsu K; Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York, USA; Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, Japan; Department of Psychiatry, Kurume University School of Medicine, Kurume, Fukuoka, Japan; Cognitive and Molecular Research Institute of Brain Diseases, Kurume University, Kurume, Fukuoka, Japan.
J Neurochem ; 132(6): 677-86, 2015 Mar.
Article em En | MEDLINE | ID: mdl-25639954
Metabotropic glutamate receptor 5 (mGluR5) regulates excitatory post-synaptic signaling in the central nervous system (CNS) and is implicated in various CNS disorders. Protein kinase A (PKA) signaling is known to play a critical role in neuropsychiatric disorders such as Parkinson's disease, schizophrenia, and addiction. Dopamine signaling is known to modulate the properties of mGluR5 in a cAMP- and PKA-dependent manner, suggesting that mGluR5 may be a direct target for PKA. Our study identifies mGluR5 at Ser870 as a direct substrate for PKA phosphorylation and demonstrates that this phosphorylation plays a critical role in the PKA-mediated modulation of mGluR5 functions such as extracellular signal-regulated kinase phosphorylation and intracellular Ca(2+) oscillations. The identification of the molecular mechanism by which PKA signaling modulates mGluR5-mediated cellular responses contributes to the understanding of the interaction between dopaminergic and glutamatergic neuronal signaling. We identified serine residue 870 (S870) in metabotropic glutamate receptor 5 (mGluR5) as a direct substrate for protein kinase A (PKA). The phosphorylation of this site regulates the ability of mGluR5 to induce extracellular signal-regulated kinase (ERK) phosphorylation and intracellular Ca(2+) oscillations. This study provides a direct molecular mechanism by which PKA signaling interacts with glutamate neurotransmission.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Quinases Dependentes de AMP Cíclico / Receptor de Glutamato Metabotrópico 5 Limite: Animals / Humans Idioma: En Revista: J Neurochem Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Quinases Dependentes de AMP Cíclico / Receptor de Glutamato Metabotrópico 5 Limite: Animals / Humans Idioma: En Revista: J Neurochem Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Japão