Your browser doesn't support javascript.
loading
Gate tunable relativistic mass and Berry's phase in topological insulator nanoribbon field effect devices.
Jauregui, Luis A; Pettes, Michael T; Rokhinson, Leonid P; Shi, Li; Chen, Yong P.
Afiliação
  • Jauregui LA; 1] Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 [2] School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907.
  • Pettes MT; Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712.
  • Rokhinson LP; 1] Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 [2] School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 [3] Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907.
  • Shi L; 1] Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712 [2] Materials Science and Engineering Program, University of Texas at Austin, Austin, TX 78712.
  • Chen YP; 1] Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 [2] School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 [3] Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907.
Sci Rep ; 5: 8452, 2015 Feb 13.
Article em En | MEDLINE | ID: mdl-25677703
Transport due to spin-helical massless Dirac fermion surface state is of paramount importance to realize various new physical phenomena in topological insulators, ranging from quantum anomalous Hall effect to Majorana fermions. However, one of the most important hallmarks of topological surface states, the Dirac linear band dispersion, has been difficult to reveal directly in transport measurements. Here we report experiments on Bi2Te3 nanoribbon ambipolar field effect devices on high-κ SrTiO3 substrates, where we achieve a gate-tuned bulk metal-insulator transition and the topological transport regime with substantial surface state conduction. In this regime, we report two unambiguous transport evidences for gate-tunable Dirac fermions through π Berry's phase in Shubnikov-de Haas oscillations and effective mass proportional to the Fermi momentum, indicating linear energy-momentum dispersion. We also measure a gate-tunable weak anti-localization (WAL) with 2 coherent conduction channels (indicating 2 decoupled surfaces) near the charge neutrality point, and a transition to weak localization (indicating a collapse of the Berry's phase) when the Fermi energy approaches the bulk conduction band. The gate-tunable Dirac fermion topological surface states pave the way towards a variety of topological electronic devices.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2015 Tipo de documento: Article