Your browser doesn't support javascript.
loading
Histamine H3 receptor in primary mouse microglia inhibits chemotaxis, phagocytosis, and cytokine secretion.
Iida, Tomomitsu; Yoshikawa, Takeo; Matsuzawa, Takuro; Naganuma, Fumito; Nakamura, Tadaho; Miura, Yamato; Mohsen, Attayeb S; Harada, Ryuichi; Iwata, Ren; Yanai, Kazuhiko.
Afiliação
  • Iida T; Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, Japan; Cyclotron Radioisotope Center, Tohoku University, 6-3 Aoba, Aramaki, Aoba-Ku, Sendai, Japan.
Glia ; 63(7): 1213-25, 2015 Jul.
Article em En | MEDLINE | ID: mdl-25754956
Histamine is a physiological amine which initiates a multitude of physiological responses by binding to four known G-protein coupled histamine receptor subtypes as follows: histamine H1 receptor (H1 R), H2 R, H3 R, and H4 R. Brain histamine elicits neuronal excitation and regulates a variety of physiological processes such as learning and memory, sleep-awake cycle and appetite regulation. Microglia, the resident macrophages in the brain, express histamine receptors; however, the effects of histamine on critical microglial functions such as chemotaxis, phagocytosis, and cytokine secretion have not been examined in primary cells. We demonstrated that mouse primary microglia express H2 R, H3 R, histidine decarboxylase, a histamine synthase, and histamine N-methyltransferase, a histamine metabolizing enzyme. Both forskolin-induced cAMP accumulation and ATP-induced intracellular Ca(2+) transients were reduced by the H3 R agonist imetit but not the H2 R agonist amthamine. H3 R activation on two ubiquitous second messenger signalling pathways suggests that H3 R can regulate various microglial functions. In fact, histamine and imetit dose-dependently inhibited microglial chemotaxis, phagocytosis, and lipopolysaccharide (LPS)-induced cytokine production. Furthermore, we confirmed that microglia produced histamine in the presence of LPS, suggesting that H3 R activation regulate microglial function by autocrine and/or paracrine signalling. In conclusion, we demonstrate the involvement of histamine in primary microglial functions, providing the novel insight into physiological roles of brain histamine.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fagocitose / Quimiotaxia / Citocinas / Receptores Histamínicos H3 / Microglia Limite: Animals Idioma: En Revista: Glia Assunto da revista: NEUROLOGIA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fagocitose / Quimiotaxia / Citocinas / Receptores Histamínicos H3 / Microglia Limite: Animals Idioma: En Revista: Glia Assunto da revista: NEUROLOGIA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Japão