Your browser doesn't support javascript.
loading
Oil palm natural diversity and the potential for yield improvement.
Barcelos, Edson; Rios, Sara de Almeida; Cunha, Raimundo N V; Lopes, Ricardo; Motoike, Sérgio Y; Babiychuk, Elena; Skirycz, Aleksandra; Kushnir, Sergei.
Afiliação
  • Barcelos E; Embrapa Amazonia Ocidental, Empresa Brasileira de Pesquisa Agropecuária , Manaus, Brazil.
  • Rios Sde A; Embrapa Amazonia Ocidental, Empresa Brasileira de Pesquisa Agropecuária , Manaus, Brazil.
  • Cunha RN; Embrapa Amazonia Ocidental, Empresa Brasileira de Pesquisa Agropecuária , Manaus, Brazil.
  • Lopes R; Embrapa Amazonia Ocidental, Empresa Brasileira de Pesquisa Agropecuária , Manaus, Brazil.
  • Motoike SY; Department of Phytotechnology, Federal University of Viçosa, Viçosa , Brazil.
  • Babiychuk E; Department of Sustainable Development, Vale Institute of Technology, Belém , Brazil.
  • Skirycz A; Department of Sustainable Development, Vale Institute of Technology, Belém , Brazil.
  • Kushnir S; Department of Sustainable Development, Vale Institute of Technology, Belém , Brazil.
Front Plant Sci ; 6: 190, 2015.
Article em En | MEDLINE | ID: mdl-25870604
ABSTRACT
African oil palm has the highest productivity amongst cultivated oleaginous crops. Species can constitute a single crop capable to fulfill the growing global demand for vegetable oils, which is estimated to reach 240 million tons by 2050. Two types of vegetable oil are extracted from the palm fruit on commercial scale. The crude palm oil and kernel palm oil have different fatty acid profiles, which increases versatility of the crop in industrial applications. Plantations of the current varieties have economic life-span around 25-30 years and produce fruits around the year. Thus, predictable annual palm oil supply enables marketing plans and adjustments in line with the economic forecasts. Oil palm cultivation is one of the most profitable land uses in the humid tropics. Oil palm fruits are the richest plant source of pro-vitamin A and vitamin E. Hence, crop both alleviates poverty, and could provide a simple practical solution to eliminate global pro-vitamin A deficiency. Oil palm is a perennial, evergreen tree adapted to cultivation in biodiversity rich equatorial land areas. The growing demand for the palm oil threatens the future of the rain forests and has a large negative impact on biodiversity. Plant science faces three major challenges to make oil palm the key element of building the future sustainable world. The global average yield of 3.5 tons of oil per hectare (t) should be raised to the full yield potential estimated at 11-18t. The tree architecture must be changed to lower labor intensity and improve mechanization of the harvest. Oil composition should be tailored to the evolving needs of the food, oleochemical and fuel industries. The release of the oil palm reference genome sequence in 2013 was the key step toward this goal. The molecular bases of agronomically important traits can be and are beginning to be understood at the single base pair resolution, enabling gene-centered breeding and engineering of this remarkable crop.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Plant Sci Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Brasil

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Plant Sci Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Brasil