Your browser doesn't support javascript.
loading
Loss of hippocampal function impairs pattern separation on a mouse touch-screen operant paradigm.
Josey, Megan; Brigman, Jonathan L.
Afiliação
  • Josey M; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA.
  • Brigman JL; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA; New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, USA. Electronic address: jbrigman@salud.unm.edu.
Neurobiol Learn Mem ; 125: 85-92, 2015 Nov.
Article em En | MEDLINE | ID: mdl-26265370
ABSTRACT
The hippocampus is heavily involved in the learning and memory processes necessary to successfully encode environmental stimuli and representations over time. Impairment of hippocampal function is associated with numerous neuropsychiatric diseases and can lead to detriments in the quality of life. In order to take full advantage of preclinical models of these disorders, there is a need for the development of more refined measures of clinically relevant hippocampal behaviors. While arena-based navigation tasks have provided fundamental information regarding the role of the hippocampus in spatial memory, the development of automated operant variants have had mixed results. Recently, an automated touch-screen paradigm has been shown to be highly sensitive to hippocampal function in the rat and eliminated mediating strategies that arose in previous tasks. Here we show that mice with lesions encompassing the entire ventral portion of the dorsal hippocampus are impaired on pattern separation behavior using a delayed nonmatching-to-location (TUNL) adapted for mice. Lesioned mice readily acquired the task at control rates when separations were maximal and delay periods were short while decreasing separations significantly impaired lesion mice. However, in contrast to previously reported results in the rat, consistently increasing delays did not significantly impair performance in the lesion group. Presentation of a variable delay within a session significantly impaired performance in lesion mice across delay periods. The current results demonstrate the utility of a touch-screen paradigm for measuring hippocampal-dependent pattern separation in the mouse and establish the paradigm as an important platform for future studies in disease models.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Condicionamento Operante / Memória Espacial / Hipocampo Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Neurobiol Learn Mem Assunto da revista: BIOLOGIA / CIENCIAS DO COMPORTAMENTO / NEUROLOGIA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Condicionamento Operante / Memória Espacial / Hipocampo Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Neurobiol Learn Mem Assunto da revista: BIOLOGIA / CIENCIAS DO COMPORTAMENTO / NEUROLOGIA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos