Your browser doesn't support javascript.
loading
Lipoxin and resolvin biosynthesis is dependent on 5-lipoxygenase activating protein.
Lehmann, Christoph; Homann, Julia; Ball, Ann-Katrin; Blöcher, René; Kleinschmidt, Thea K; Basavarajappa, Devaraj; Angioni, Carlo; Ferreirós, Nerea; Häfner, Ann-Kathrin; Rådmark, Olof; Proschak, Ewgenij; Haeggström, Jesper Z; Geisslinger, Gerd; Parnham, Michael J; Steinhilber, Dieter; Kahnt, Astrid Stefanie.
Afiliação
  • Lehmann C; *Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group Translational Medicine and Pharmacology, Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, and Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany; and Department of Medical Biochemistr
  • Homann J; *Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group Translational Medicine and Pharmacology, Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, and Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany; and Department of Medical Biochemistr
  • Ball AK; *Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group Translational Medicine and Pharmacology, Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, and Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany; and Department of Medical Biochemistr
  • Blöcher R; *Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group Translational Medicine and Pharmacology, Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, and Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany; and Department of Medical Biochemistr
  • Kleinschmidt TK; *Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group Translational Medicine and Pharmacology, Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, and Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany; and Department of Medical Biochemistr
  • Basavarajappa D; *Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group Translational Medicine and Pharmacology, Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, and Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany; and Department of Medical Biochemistr
  • Angioni C; *Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group Translational Medicine and Pharmacology, Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, and Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany; and Department of Medical Biochemistr
  • Ferreirós N; *Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group Translational Medicine and Pharmacology, Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, and Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany; and Department of Medical Biochemistr
  • Häfner AK; *Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group Translational Medicine and Pharmacology, Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, and Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany; and Department of Medical Biochemistr
  • Rådmark O; *Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group Translational Medicine and Pharmacology, Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, and Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany; and Department of Medical Biochemistr
  • Proschak E; *Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group Translational Medicine and Pharmacology, Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, and Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany; and Department of Medical Biochemistr
  • Haeggström JZ; *Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group Translational Medicine and Pharmacology, Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, and Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany; and Department of Medical Biochemistr
  • Geisslinger G; *Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group Translational Medicine and Pharmacology, Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, and Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany; and Department of Medical Biochemistr
  • Parnham MJ; *Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group Translational Medicine and Pharmacology, Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, and Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany; and Department of Medical Biochemistr
  • Steinhilber D; *Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group Translational Medicine and Pharmacology, Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, and Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany; and Department of Medical Biochemistr
  • Kahnt AS; *Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group Translational Medicine and Pharmacology, Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, and Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany; and Department of Medical Biochemistr
FASEB J ; 29(12): 5029-43, 2015 Dec.
Article em En | MEDLINE | ID: mdl-26289316
ABSTRACT
Resolution of acute inflammation is an active process coordinated by proresolving lipid mediators (SPMs) such as lipoxins (LXs) and resolvins (Rvs), which are formed by the concerted action of 2 lipoxygenases (LOs). Because the exact molecular mechanisms of SPM biosynthesis are not completely understood, we aimed to investigate LX and D-type Rv formation in human leukocytes and HEK293T cells overexpressing leukotriene (LT) pathway enzymes. Activity assays in precursor (15-hydroxyeicosatetraenoic acids, 17-HDoHE)-treated granulocytes [polymorphonuclear leukocytes (PMNLs)] showed a strict dependence of LXA4/RvD1 biosynthesis on cell integrity, and incubation with recombinant human 5-LO did not lead to LX or Rv formation. Pharmacologic inhibition of 5-LO activating protein (FLAP) by MK-886 inhibited LXA4/RvD1 biosynthesis in precursor-treated PMNLs (drug concentration causing 50% inhibition ∼ 0.3/0.2 µM), as did knockdown of the enzyme in MM6 cells, and precursor-treated HEK293T overexpressing 5-LO produced high amounts of LXA4 only in the presence of FLAP. In addition, inhibition of cytosolic phospholipase A2α (cPLA2α) interfered with LXA4/RvD1 formation from exogenous precursors in PMNLs. Furthermore, inhibition of the LT synthases LTA4 hydrolase and LTC4 synthase in PMNL/platelet coincubations augmented LXA4 levels. These findings show that several enzymes known to be involved in the biosynthesis of proinflammatory LTs, such as FLAP and cPLA2α, also contribute to LX and Rv formation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácidos Docosa-Hexaenoicos / Lipoxinas / Proteínas Ativadoras de 5-Lipoxigenase Limite: Humans Idioma: En Revista: FASEB J Assunto da revista: BIOLOGIA / FISIOLOGIA Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácidos Docosa-Hexaenoicos / Lipoxinas / Proteínas Ativadoras de 5-Lipoxigenase Limite: Humans Idioma: En Revista: FASEB J Assunto da revista: BIOLOGIA / FISIOLOGIA Ano de publicação: 2015 Tipo de documento: Article