Your browser doesn't support javascript.
loading
Microwave soft x-ray microscopy for nanoscale magnetization dynamics in the 5-10 GHz frequency range.
Bonetti, Stefano; Kukreja, Roopali; Chen, Zhao; Spoddig, Detlef; Ollefs, Katharina; Schöppner, Christian; Meckenstock, Ralf; Ney, Andreas; Pinto, Jude; Houanche, Richard; Frisch, Josef; Stöhr, Joachim; Dürr, Hermann A; Ohldag, Hendrik.
Afiliação
  • Bonetti S; Department of Physics, Stanford University, Stanford, California 94305, USA.
  • Kukreja R; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA.
  • Chen Z; Department of Physics, Stanford University, Stanford, California 94305, USA.
  • Spoddig D; Institut für Experimentalphysik, Universität Duisburg-Essen, Duisburg, Germany.
  • Ollefs K; Institut für Experimentalphysik, Universität Duisburg-Essen, Duisburg, Germany.
  • Schöppner C; Institut für Experimentalphysik, Universität Duisburg-Essen, Duisburg, Germany.
  • Meckenstock R; Institut für Experimentalphysik, Universität Duisburg-Essen, Duisburg, Germany.
  • Ney A; Institut für Experimentalphysik, Universität Duisburg-Essen, Duisburg, Germany.
  • Pinto J; Linear Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
  • Houanche R; Linear Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
  • Frisch J; Linear Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
  • Stöhr J; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA.
  • Dürr HA; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA.
  • Ohldag H; Stanford Synchrotron Radiation Laboratory, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
Rev Sci Instrum ; 86(9): 093703, 2015 Sep.
Article em En | MEDLINE | ID: mdl-26429444
ABSTRACT
We present a scanning transmission x-ray microscopy setup combined with a novel microwave synchronization scheme for studying high frequency magnetization dynamics at synchrotron light sources. The sensitivity necessary to detect small changes in the magnetization on short time scales and nanometer spatial dimensions is achieved by combining the excitation mechanism with single photon counting electronics that is locked to the synchrotron operation frequency. Our instrument is capable of creating direct images of dynamical phenomena in the 5-10 GHz range, with high spatial resolution. When used together with circularly polarized x-rays, the above capabilities can be combined to study magnetic phenomena at microwave frequencies, such as ferromagnetic resonance (FMR) and spin waves. We demonstrate the capabilities of our technique by presenting phase resolved images of a ∼6 GHz nanoscale spin wave generated by a spin torque oscillator, as well as the uniform ferromagnetic precession with ∼0.1° amplitude at ∼9 GHz in a micrometer-sized cobalt strip.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Rev Sci Instrum Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Rev Sci Instrum Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos