Your browser doesn't support javascript.
loading
MicroRNA21 promotes interstitial fibrosis via targeting DDAH1: a potential role in renal fibrosis.
Liu, Xiu-Juan; Hong, Quan; Wang, Zhen; Yu, Yan-yan; Zou, Xin; Xu, Li-hong.
Afiliação
  • Liu XJ; Department of Nephrology, the 94th Hospital of Chinese People's Liberation Army, Changcheng Hospital affiliated to Nanchang University, Jinggangshan Road 1028, Nanchang, 330002, Jiangxi, People's Republic of China. xiujuan_liu796@163.com.
  • Hong Q; Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, 100039, People's Republic of China.
  • Wang Z; Department of Nephrology, the 94th Hospital of Chinese People's Liberation Army, Changcheng Hospital affiliated to Nanchang University, Jinggangshan Road 1028, Nanchang, 330002, Jiangxi, People's Republic of China.
  • Yu YY; Department of Nephrology, the 94th Hospital of Chinese People's Liberation Army, Changcheng Hospital affiliated to Nanchang University, Jinggangshan Road 1028, Nanchang, 330002, Jiangxi, People's Republic of China.
  • Zou X; Department of Nephrology, the 94th Hospital of Chinese People's Liberation Army, Changcheng Hospital affiliated to Nanchang University, Jinggangshan Road 1028, Nanchang, 330002, Jiangxi, People's Republic of China.
  • Xu LH; Department of Nephrology, the 94th Hospital of Chinese People's Liberation Army, Changcheng Hospital affiliated to Nanchang University, Jinggangshan Road 1028, Nanchang, 330002, Jiangxi, People's Republic of China.
Mol Cell Biochem ; 411(1-2): 181-9, 2016 Jan.
Article em En | MEDLINE | ID: mdl-26455824
Scarring of the kidney directly promotes loss of kidney function. A thorough understanding of renal fibrosis at the molecular level is urgently needed. One prominent microRNA, miR-21, was previously reported to be up-regulated in renal fibrosis, but its mechanism is unclear. In the present study, an unbiased search for downstream messenger RNA targets of miR-21 using the HK-2 human tubular epithelial cell line was performed. Effects of the target gene in renal fibrosis and underlying mechanism were explored. Results show that forced expression of miR-21 significantly increased cell apoptosis, interstitial deposition, and decreased E-cadherin level of the HK-2 cells. Conversely, inhibition of miR-21 promoted the opposite effects. We identified that miR-21 directly interacted with the 3'-untranslated region of the suppressor of dimethylarginine dimethylaminohydrolase 1 (DDAH1) by dual-luciferase assay. Moreover, pcDNA3.1-DDAH1 pretreatment could effectively reduce α-SMA, collagen I, fibronectin expression, and promoted E-cadherin expression, as well as inhibiting HK-2 cell apoptosis, while all those effects can be attenuated by pretreatment with the Wnt/ß-catenin signaling activator Licl. Taken together, our results suggest that miR-21 may regulate renal fibrosis by the Wnt pathway via directly targeting DDAH1. Therefore, this study may provide novel strategies for the development of renal fibrosis therapy.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: MicroRNAs / Amidoidrolases / Nefropatias Limite: Humans Idioma: En Revista: Mol Cell Biochem Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: MicroRNAs / Amidoidrolases / Nefropatias Limite: Humans Idioma: En Revista: Mol Cell Biochem Ano de publicação: 2016 Tipo de documento: Article