Your browser doesn't support javascript.
loading
Respiratory Syncytial Virus Attachment Glycoprotein Contribution to Infection Depends on the Specific Fusion Protein.
Meng, Jia; Hotard, Anne L; Currier, Michael G; Lee, Sujin; Stobart, Christopher C; Moore, Martin L.
Afiliação
  • Meng J; Department of Pediatrics, Emory University of School of Medicine, Atlanta, Georgia, USA Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
  • Hotard AL; Department of Pediatrics, Emory University of School of Medicine, Atlanta, Georgia, USA Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
  • Currier MG; Department of Pediatrics, Emory University of School of Medicine, Atlanta, Georgia, USA Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
  • Lee S; Department of Pediatrics, Emory University of School of Medicine, Atlanta, Georgia, USA Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
  • Stobart CC; Department of Pediatrics, Emory University of School of Medicine, Atlanta, Georgia, USA Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
  • Moore ML; Department of Pediatrics, Emory University of School of Medicine, Atlanta, Georgia, USA Children's Healthcare of Atlanta, Atlanta, Georgia, USA martin.moore@emory.edu.
J Virol ; 90(1): 245-53, 2016 01 01.
Article em En | MEDLINE | ID: mdl-26468535
ABSTRACT
UNLABELLED Human respiratory syncytial virus (RSV) is an important pathogen causing acute lower respiratory tract disease in children. The RSV attachment glycoprotein (G) is not required for infection, as G-null RSV replicates efficiently in several cell lines. Our laboratory previously reported that the viral fusion (F) protein is a determinant of strain-dependent pathogenesis. Here, we hypothesized that virus dependence on G is determined by the strain specificity of F. We generated recombinant viruses expressing G and F, or null for G, from the laboratory A2 strain (Katushka RSV-A2GA2F [kRSV-A2GA2F] and kRSV-GstopA2F) or the clinical isolate A2001/2-20 (kRSV-2-20G2-20F and kRSV-Gstop2-20F). We quantified the virus cell binding, entry kinetics, infectivity, and growth kinetics of these four recombinant viruses in vitro. RSV expressing the 2-20 G protein exhibited the greatest binding activity. Compared to the parental viruses expressing G and F, removal of 2-20 G had more deleterious effects on binding, entry, infectivity, and growth than removal of A2 G. Overall, RSV expressing 2-20 F had a high dependence on G for binding, entry, and infection. IMPORTANCE RSV is the leading cause of childhood acute respiratory disease requiring hospitalization. As with other paramyxoviruses, two major RSV surface viral glycoproteins, the G attachment protein and the F fusion protein, mediate virus binding and subsequent membrane fusion, respectively. Previous work on the RSV A2 prototypical strain demonstrated that the G protein is functionally dispensable for in vitro replication. This is in contrast to other paramyxoviruses that require attachment protein function as a prerequisite for fusion. We reevaluated this requirement for RSV using G and F proteins from clinical isolate 2-20. Compared to the laboratory A2 strain, the G protein from 2-20 had greater contributions to virus binding, entry, infectivity, and in vitro growth kinetics. Thus, the clinical isolate 2-20 F protein function depended more on its G protein, suggesting that RSV has a higher dependence on G than previously thought.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas do Envelope Viral / Proteínas Virais de Fusão / Vírus Sincicial Respiratório Humano / Ligação Viral / Internalização do Vírus Limite: Child, preschool / Humans Idioma: En Revista: J Virol Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas do Envelope Viral / Proteínas Virais de Fusão / Vírus Sincicial Respiratório Humano / Ligação Viral / Internalização do Vírus Limite: Child, preschool / Humans Idioma: En Revista: J Virol Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos