Cytosolic Receptor Melanoma Differentiation-Associated Protein 5 Mediates Preconditioning-Induced Neuroprotection Against Cerebral Ischemic Injury.
Stroke
; 47(1): 262-6, 2016 Jan.
Article
em En
| MEDLINE
| ID: mdl-26564103
BACKGROUND AND PURPOSE: Preconditioning with poly-l-lysine and carboxymethylcellulose (ICLC) provides robust neuroprotection from cerebral ischemia in a mouse stroke model. However, the receptor that mediates neuroprotection is unknown. As a synthetic double-stranded RNA, poly-ICLC may bind endosomal Toll-like receptor 3 or one of the cytosolic retinoic acid-inducible gene-I-like receptor family members, retinoic acid-inducible gene-I, or melanoma differentiation-associated protein 5. Activation of these receptors culminates in type I interferons (IFN-α/ß) induction-a response required for poly-ICLC-induced neuroprotection. In this study, we investigate the receptor required for poly-ICLC-induced neuroprotection. METHODS: Toll-like receptor 3, melanoma differentiation-associated protein 5-, and IFN-promoter stimulator 1-deficient mice were treated with poly-ICLC 24 hours before middle cerebral artery occlusion. Infarct volume was measured 24 hours after stroke to identify the receptor signaling pathways involved in protection. IFN-α/ß induction was measured in plasma samples collected 6 hours after poly-ICLC treatment. IFN-ß-deficient mice were used to test the requirement of IFN-ß for poly-ICLC-induced neuroprotection. Mice were treated with recombinant IFN-α-A to test the role of IFN-α as a potential mediator of neuroprotection. RESULTS: Poly-ICLC induction of both neuroprotection and systemic IFN-α/ß requires the cytosolic receptor melanoma differentiation-associated protein 5 and the adapter molecule IFN-promoter stimulator 1, whereas it is independent of Toll-like receptor 3. IFN-ß is not required for poly-ICLC-induced neuroprotection. IFN-α treatment protects against stroke. CONCLUSIONS: Poly-ICLC preconditioning is mediated by melanoma differentiation-associated protein 5 and its adaptor molecule IFN-promoter stimulator 1. This is the first evidence that a cytosolic receptor can mediate neuroprotection, providing a new target for the development of therapeutic agents to protect the brain from ischemic injury.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Isquemia Encefálica
/
Precondicionamento Isquêmico
/
Acidente Vascular Cerebral
/
RNA Helicases DEAD-box
Tipo de estudo:
Risk_factors_studies
Limite:
Animals
Idioma:
En
Revista:
Stroke
Ano de publicação:
2016
Tipo de documento:
Article