Your browser doesn't support javascript.
loading
Dynamics of Water Associated with Lithium Ions Distributed in Polyethylene Oxide.
Zhang, Zhe; Ohl, Michael; Diallo, Souleymane O; Jalarvo, Niina H; Hong, Kunlun; Han, Youngkyu; Smith, Gregory S; Do, Changwoo.
Afiliação
  • Zhang Z; Biology and Soft-Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
  • Ohl M; Forschungszentrum Jülich, Jülich Center for Neutron Science, Outstation at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
  • Diallo SO; Forschungszentrum Jülich, Jülich Center for Neutron Science, Outstation at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
  • Jalarvo NH; Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
  • Hong K; Forschungszentrum Jülich, Jülich Center for Neutron Science, Outstation at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
  • Han Y; Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
  • Smith GS; Center For Nanophase Materials Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
  • Do C; Biology and Soft-Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
Phys Rev Lett ; 115(19): 198301, 2015 Nov 06.
Article em En | MEDLINE | ID: mdl-26588420
ABSTRACT
The dynamics of water in polyethylene oxide (PEO)/LiCl solution has been studied with quasielastic neutron scattering experiments and molecular dynamics (MD) simulations. Two different time scales of water diffusion representing interfacial water and bulk water dynamics have been identified. The measured diffusion coefficient of interfacial water remained 5-10 times smaller than that of bulk water, but both were slowed by approximately 50% in the presence of Li(+). Detailed analysis of MD trajectories suggests that Li(+) is favorably found at the surface of the hydration layer, and the probability to find the caged Li(+) configuration formed by the PEO is lower than for the noncaged Li(+)-PEO configuration. In both configurations, however, the slowing down of water molecules is driven by reorienting water molecules and creating water-Li(+) hydration complexes. Performing the MD simulation with different ions (Na(+) and K(+)) revealed that smaller ionic radius of the ions is a key factor in disrupting the formation of PEO cages by allowing spaces for water molecules to come in between the ion and PEO.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polietilenoglicóis / Água / Compostos de Lítio / Modelos Químicos Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Phys Rev Lett Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polietilenoglicóis / Água / Compostos de Lítio / Modelos Químicos Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Phys Rev Lett Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos