Your browser doesn't support javascript.
loading
Effects of Strong Electronic Coupling in Chlorin and Bacteriochlorin Dyads.
Kang, Hyun Suk; Esemoto, Nopondo N; Diers, James R; Niedzwiedzki, Dariusz M; Greco, Jordan A; Akhigbe, Joshua; Yu, Zhanqian; Pancholi, Chirag; Bhagavathy, Ganga Viswanathan; Nguyen, Jamie K; Kirmaier, Christine; Birge, Robert R; Ptaszek, Marcin; Holten, Dewey; Bocian, David F.
Afiliação
  • Kang HS; Department of Chemistry, Washington University , St. Louis, Missouri 63130-4889, United States.
  • Esemoto NN; Department of Chemistry and Biochemistry, University of Maryland, Baltimore County , Baltimore, Maryland 21250-0001, United States.
  • Diers JR; Department of Chemistry, University of California , Riverside, California 92521-0403, United States.
  • Niedzwiedzki DM; Photosynthetic Antenna Research Center, Washington University , St. Louis, Missouri 63130-4889, United States.
  • Greco JA; Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3060, United States.
  • Akhigbe J; Department of Chemistry and Biochemistry, University of Maryland, Baltimore County , Baltimore, Maryland 21250-0001, United States.
  • Yu Z; Department of Chemistry and Biochemistry, University of Maryland, Baltimore County , Baltimore, Maryland 21250-0001, United States.
  • Pancholi C; Department of Chemistry and Biochemistry, University of Maryland, Baltimore County , Baltimore, Maryland 21250-0001, United States.
  • Bhagavathy GV; Department of Chemistry and Biochemistry, University of Maryland, Baltimore County , Baltimore, Maryland 21250-0001, United States.
  • Nguyen JK; Department of Chemistry and Biochemistry, University of Maryland, Baltimore County , Baltimore, Maryland 21250-0001, United States.
  • Kirmaier C; Department of Chemistry, Washington University , St. Louis, Missouri 63130-4889, United States.
  • Birge RR; Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3060, United States.
  • Ptaszek M; Department of Chemistry and Biochemistry, University of Maryland, Baltimore County , Baltimore, Maryland 21250-0001, United States.
  • Holten D; Department of Chemistry, Washington University , St. Louis, Missouri 63130-4889, United States.
  • Bocian DF; Department of Chemistry, University of California , Riverside, California 92521-0403, United States.
J Phys Chem A ; 120(3): 379-95, 2016 Jan 28.
Article em En | MEDLINE | ID: mdl-26765839
ABSTRACT
Achieving tunable, intense near-infrared absorption in molecular architectures with properties suitable for solar light harvesting and biomedical studies is of fundamental interest. Herein, we report the photophysical, redox, and molecular-orbital characteristics of nine hydroporphyrin dyads and associated benchmark monomers that have been designed and synthesized to attain enhanced light harvesting. Each dyad contains two identical hydroporphyrins (chlorin or bacteriochlorin) connected by a linker (ethynyl or butadiynyl) at the macrocycle ß-pyrrole (3- or 13-) or meso (15-) positions. The strong electronic communication between constituent chromophores is indicated by the doubling of prominent absorption features, split redox waves, and paired linear combinations of frontier molecular orbitals. Relative to the benchmarks, the chlorin dyads in toluene show substantial bathochromic shifts of the long-wavelength absorption band (17-31 nm), modestly reduced singlet excited-state lifetimes (τS = 3.6-6.2 ns vs 8.8-12.3 ns), and increased fluorescence quantum yields (Φf = 0.37-0.57 vs 0.34-0.39). The bacteriochlorin dyads in toluene show significant bathochromic shifts (25-57 nm) and modestly reduced τS (1.6-3.4 ns vs 3.5-5.3 ns) and Φf (0.09-0.19 vs 0.17-0.21) values. The τS and Φf values for the bacteriochlorin dyads are reduced substantially (up to ∼20-fold) in benzonitrile. The quenching is due primarily to the increased S1 → S0 internal conversion that is likely induced by increased contribution of charge-resonance configurations to the S1 excited state in the polar medium. The fundamental insights gained into the physicochemical properties of the strongly coupled hydroporphyrin dyads may aid their utilization in solar-energy conversion and photomedicine.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Porfirinas Idioma: En Revista: J Phys Chem A Assunto da revista: QUIMICA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Porfirinas Idioma: En Revista: J Phys Chem A Assunto da revista: QUIMICA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos