Your browser doesn't support javascript.
loading
Reversal of axonal growth defects in an extraocular fibrosis model by engineering the kinesin-microtubule interface.
Minoura, Itsushi; Takazaki, Hiroko; Ayukawa, Rie; Saruta, Chihiro; Hachikubo, You; Uchimura, Seiichi; Hida, Tomonobu; Kamiguchi, Hiroyuki; Shimogori, Tomomi; Muto, Etsuko.
Afiliação
  • Minoura I; Laboratory for Molecular Biophysics, Brain Science Institute, RIKEN 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
  • Takazaki H; Laboratory for Molecular Biophysics, Brain Science Institute, RIKEN 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
  • Ayukawa R; Laboratory for Molecular Biophysics, Brain Science Institute, RIKEN 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
  • Saruta C; Laboratory for Molecular Biophysics, Brain Science Institute, RIKEN 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
  • Hachikubo Y; Laboratory for Molecular Mechanisms of Thalamus Development, Brain Science Institute, RIKEN 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
  • Uchimura S; Laboratory for Molecular Biophysics, Brain Science Institute, RIKEN 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
  • Hida T; Laboratory for Molecular Biophysics, Brain Science Institute, RIKEN 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
  • Kamiguchi H; Laboratory for Neuronal Growth Mechanisms, Brain Science Institute, RIKEN 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
  • Shimogori T; Laboratory for Neuronal Growth Mechanisms, Brain Science Institute, RIKEN 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
  • Muto E; Laboratory for Molecular Mechanisms of Thalamus Development, Brain Science Institute, RIKEN 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
Nat Commun ; 7: 10058, 2016 Jan 18.
Article em En | MEDLINE | ID: mdl-26775887
ABSTRACT
Mutations in human ß3-tubulin (TUBB3) cause an ocular motility disorder termed congenital fibrosis of the extraocular muscles type 3 (CFEOM3). In CFEOM3, the oculomotor nervous system develops abnormally due to impaired axon guidance and maintenance; however, the underlying mechanism linking TUBB3 mutations to axonal growth defects remains unclear. Here, we investigate microtubule (MT)-based motility in vitro using MTs formed with recombinant TUBB3. We find that the disease-associated TUBB3 mutations R262H and R262A impair the motility and ATPase activity of the kinesin motor. Engineering a mutation in the L12 loop of kinesin surprisingly restores a normal level of motility and ATPase activity on MTs carrying the R262A mutation. Moreover, in a CFEOM3 mouse model expressing the same mutation, overexpressing the suppressor mutant kinesin restores axonal growth in vivo. Collectively, these findings establish the critical role of the TUBB3-R262 residue for mediating kinesin interaction, which in turn is required for normal axonal growth and brain development.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Axônios / Cinesinas / Microtúbulos Tipo de estudo: Prognostic_studies Limite: Animals / Pregnancy Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Axônios / Cinesinas / Microtúbulos Tipo de estudo: Prognostic_studies Limite: Animals / Pregnancy Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Japão